PROJET RENATU

Analyse des processus de renaturation en tissu urbain dense en relation avec des infrastructures linéaires de transport urbaines et leurs emprises : le cas de la Métropole du Grand Paris

RAPPORT FINAL
Septembre 2017

Auteurs : Pierre Pech, Cédissia About, Nathalie Frascaria-Lacoste, Philippe Jacob, Laurent Simon
« …
Mais nous sur notre chemin de fer
On s’est mis à rouler
Rouler derrière l’hiver
Et on l’a écrasé
Et la maison s’est arrêtée
Et le printemps nous a salués

C’était lui le garde-barrière
Et il nous a bien remerciés
Et toutes les fleurs de toute la terre
Soudain se sont mises à pousser
Pousser à tort et à travers
Sur la voie de chemin de fer
Qui ne voulait plus avancer
De peur de les abimer

Alors on est revenu à pied
A Pied tout autour de la terre
A pied tout autour de la mer
Tout autour du soleil
De la lune et des étoiles
A pied à cheval en voiture
Et en bateau à voiles. »

Jacques Prévert, En sortant de l’école
Sommaire

Sommaire .. 3
Introduction ... 5
1- Matériaux et méthodes .. 8
 1-1. Les ambitions du projet RENATU ... 8
 1-2. Le mode de fonctionnement et la méthodologie ... 12
 1-2-1. le consortium de recherche, la conduite du projet et les séminaires de recherche 12
 1-2-2. Communications, colloques, publications .. 16
 1-3. Fonctionnement financier .. 19
 1-4. Les difficultés rencontrées : entre aléas et blocages et capacité de résilience du projet RENATU ... 23
 1-4-1. Les difficultés personnelles : du drame de l’été 2014 à la gestion de l’abandon du thésard 23
 1-3-2. Les manquements et les défauts de la gestion des financements par la Direction de la Recherche de l’université Paris 1 ... 25
 1-3-3. Les difficultés rencontrées dans les relations avec certains acteurs des ILTe 27
Conclusion sur cette partie de présentation .. 29
Références bibliographiques de cette première partie ... 30
2. Les thèmes et les objets traités ... 31
 2-1. La question de la renaturation : nature en ville ? biodiversité ? 32
 2-1-1. La reconnaissance d’une nature et d’une biodiversité en ville 32
 2-1-2. Renaturation : spontanée ou contrôlée ? ... 35
 Références ... 39
 2-2. La MGP, Métropole du Grand Paris : quelles ambitions pour quelle biodiversité ? 41
Résumé .. 42
Mots clés ... 42
Abstract ... 42
Key words ... 42
INTRODUCTION .. 43
Méthode : l’analyse du discours des élus de la MGP .. 44
La métropole du Grand Paris .. 48
Résultats ... 51
Conclusion .. 57
Remerciements .. 59
RÉFÉRENCES BIBLIOGRAPHIQUES .. 59
2-3. Les avis des opérateurs et gestionnaires.. 64
 2-3-1. La grille d’entretien .. 64
 2-3-2. Les perceptions des acteurs, opérateurs et gestionnaires 65
 2-3-3 Deux exemples de modes de gestion .. 74
2-4. Renaturation, ILTe et questions foncières .. 77
Eviter-Réduire-Compenser ou comment éco-concevoir un projet d’infrastructure dans le bon ordre.. 77
Compenser, oui mais comment ? Le cas des infrastructures de transport et la mobilisation des ressources foncières.. 81
Une offre de compensation en construction .. 83
Conclusion.. 87
Remerciements .. 87
2-5. L’analyse des perceptions des usagers.. 88
 2-5-1. Objectifs.. 88
 2-5-2. Dispositif méthodologique... 88
 2-5-3. Présentation de l’échantillon : des profils socioéconmiques variés selon la partie du tramway empruntée .. 93
 2-5-4. Premiers résultats .. 94
2-6. Infrastructures de transports : des vecteurs de biodiversité en milieu urbain ?................. 100
2-7. Les ILTe favorisent la progression des espèces vers les cœurs urbanisés : l’exemple du parc de la Poudrerie, Seine-Saint-Denis ... 107
2-8. L’indicateur RENATU .. 126
 2-8-1 Présentation .. 126
 2-8-2. Le T2 : intérêts méthodologiques et pertinence de son rôle écologique........ 128
 2-8-3. RESULTATS .. 136
 2-8-4. DISCUSSION .. 140
Références ... 148
Introduction

RENATU est un projet de recherche à enjeu scientifique et opérationnel soutenu par ITTECOP, Infrastructures de Transport Terrestres, Ecosystèmes et Paysages, (www.ittecop.fr), programme incitatif de recherche conduit par le Ministère de la Transition Ecologique et Solidaire, par l’ADEME, par la FRB et par le CILB, Club des Infrastructures Linéaires et Biodiversité.
En réponse à l’AAP d’ITTECOP de 2013-2014, le projet RENATU vise à analyser dans quelles mesures des ILTe, Infrastructures Linéaires de transport et leurs emprises, peuvent avoir un impact positif sur la biodiversité et quelles sont les modalités de renaturation potentielle dans le cadre de tissus urbains denses le long de ces ILTe. Le projet se focalise sur l’espace urbain parisien le plus dense, c’est-à-dire le territoire de l’EPCI de la Métropole du Grand Paris.

Résumé de son fonctionnement

Par convention, il était prévu que le projet RENATU débute le 01-10-2014 et se termine le 30-09-2017. Scientifiquement, le projet RENATU a débuté effectivement en juillet 2014 et il s’est terminé en septembre 2017. Les derniers travaux de terrain, notamment l’enquête auprès des usagers du T2 a pris fin en août 2017. Ce présent rapport est terminé en septembre 2017, soit dans les délais convenus.
Le projet RENATU a été porté par un groupe d’enseignants-chercheurs, issus des sciences environnementales, en géographie et en écologie, et d’opérationnels. Il a été fortement appuyé par le travail d’étudiants, 4 de master en plus d’un groupe d’atelier du Master Risque et Environnement de Paris 1 et d’une post-doctorante.
Malgré les difficultés auxquelles tout projet est confronté, difficultés qui ont eu leur part de spécificité, le groupe de participants a pu produire des travaux, des publications et présenter des communications dans des séminaires de restitution propres, des colloques nationaux et deux colloques internationaux.

Résumé de ses principaux résultats et avancées

Partant du constat émanant d’une riche littérature scientifique et technique sur le sujet qu’il existe une dynamique de développement de milieux et d’espaces de nature à la faveur des emprises des infrastructures de transport linéaires notamment en tissu urbain dense, l’ambition du projet RENATU a été double. L’un des objectifs était de répondre à la demande de création d’un outil opérationnel permettant d’évaluer et d’effectuer un suivi de la qualité écologique de ces milieux de nature le long des ILTe : nous avons abouti à la mise en œuvre d’un indicateur simple d’usage et a priori pertinent d’un point de vue écologique. Deux publications sont parues et une autre est en cours de réalisation sur ce sujet. L’autre objectif était d’estimer en quoi et quels acteurs pouvaient être concernés par ces
milieux de nature urbains dans le cadre original de la Métropole du Grand Paris. Deux articles sont soumis à des revues et deux autres articles sont en préparation (Tab.1).

Tableau 1 : tableau des publications du projet RENATU

<table>
<thead>
<tr>
<th>Titre de l'article</th>
<th>Année, Revue</th>
<th>Auteurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le cas de l’E-R-C – Éviter-Réduire-Compenser – pour les infrastructures linéaires de transport : un double effet sur le foncier</td>
<td>Proposé pour publication dans la Revue Foncière</td>
<td>Pierre Pech, Laura Clévenot, Jean-Marc Fourès, Delphine Giney, Sarah Lavaux, Joachim Lémeri, Mathilde Riboulot-Chetrit, Laura Thuillier</td>
</tr>
<tr>
<td>L’indicateur RENATU</td>
<td>En cours de rédaction et de finalisation avant traduction et proposition dans une revue comme Urban forestry & Urban Greening ou Urban Ecosystems ou Ecological Indicators</td>
<td>Pierre Pech, Laura Thuillier, Flavia Lifchitz, Cédissia About, Nathalie Frascaria-Lacoste, Philippe Jacob, Mathilde Riboulot-Chetrit, Laurent Simon</td>
</tr>
<tr>
<td>Approche de la perception de la biodiversité par les usagers et comparaison avec les données de l’indicateur RENATU</td>
<td>En cours de rédaction et finalisation avant traduction et proposition dans une revue comme Cities ou Urban forestry & Urban Greening ou Urban Ecosystems</td>
<td>Mathilde Riboulot-Chetrit, Cédissia About, Nathalie Frascaria-Lacoste, Philippe Jacob, Laurent Simon, Pierre Pech</td>
</tr>
</tbody>
</table>
Perspectives
Si le projet RENATU, en tant que projet ayant répondu à l’AAP du programme ITTECOP, a pris fin effectivement fin août 2017, il a initié un champ de recherche en particulier au sein de l’UMR LADYSS, dans deux directions :

- La première direction est celle qui concerne le champ des impacts des ILTe sur la biodiversité et leur gestion par les acteurs. Cette orientation de recherche fait corps avec les travaux de la chaire BEGI et du master BIOTERRE (www.masterbioterre.com). Trois thèses au moins sont en cours et vont être soutenues dans les deux ans qui viennent, par ordre chronologique,
 o celle de Jean-Marc Fourès sur les impacts diffus des LGV sur la biodiversité,
 o celle de Delphine Giney sur les ILT par câble en milieu urbain
 o et celle de Laura Clevelenot sur les questions de biodiversité temporaire dans les bassins de réception des eaux de ruissellement des emprises autoroutières, thèse d’ailleurs qui est labellisée par le programme ITTECOP.

Autant de recherches qui se situent à l’interface entre l’opérationnel et le fondamental, comme l’a promu volontairement et avec beaucoup de courage et d’intelligence le programme ITTECOP.

 o Il faut y ajouter la thèse de Laura Thuillier, qui à l’issue de son stage de 6 mois dans le cadre du projet RENATU a été embauchée en bourse CIFRE par l’entreprise ENGIE et est dirigée par Nathalie Machon du MNHN.

- La seconde orientation est celle qui concerne la Métropole du Grand Paris et la question de la prise en charge de la nature et de la biodiversité. Là encore, une thèse débute dès l’automne 2017 et, pendant trois ans, l’objectif de Cécile Gauthier est de comprendre quels sont les leviers qui permettraient de développer une participation plus active des citoyens de la MGP pour prendre en charge les éléments de nature sur ce territoire. En outre, en juin 2018 aura lieu un grand colloque organisé par le LADYSS et par le master BIOTERRE autour de cette question de la prise en charge de la biodiversité dans le cadre des grandes métropoles.

Ce rapport est composé de deux parties :

- La première présente les modes de fonctionnement, les bilans scientifique et financier, la méthode choisie pour traiter et orienter la question proposée dans le projet. Dans cette partie, les sous-parties sont toutes co-signées du groupe des participants.

- La seconde présente les résultats, essentiellement sous la forme des articles ou des projets d’articles à venir à l’issue de ce projet. Ces articles sont co-signés des auteurs qui ont participé à leur rédaction.
1- Matériaux et méthodes

1-1. Les ambitions du projet RENATU

Auteurs : Pierre Pech, Cédissia About, Nathalie Frascaria-Lacoste, Philippe Jacob, Laurent Simon

Le projet RENATU visait à comprendre dans quelle mesure, dans un milieu urbain dense, l’implantation d’Infrastructures Linéaires de Transport et de leur emprise, ILTe, peut s’accompagner d’une renaturation des territoires.
Cette question de la renaturation était l’une des questions essentielles posées par le programme ITTECOP. L’une des tâches de notre projet (Fig. 1), la tâche 2, a été consacrée à cette question. La question de fond, particulièrement en contexte urbain dense, est de savoir comment la naturalité peut être envisagée par de nombreux acteurs :
- Les écologues qui se sont penchés sur le sujet depuis plusieurs années,
- Les politiques publiques, acteurs, élus et techniciens,
- Les citoyens qui réclament de plus en plus, en fonction des projets localement développés, de pouvoir prendre part aux décisions.
Cette question de la naturalité en ville est traitée dans le point 2-1. Cela englobe une grande variété d’approches, de perceptions et d’enjeux. Au premier plan ces questions ont été fortement développées dès le début du 21ème siècle, dans le contexte du basculement vers la ville durable et dans la prise en compte de l’érosion de la biodiversité.
Dans un premier temps, il s’est agi de répondre à l’urgence du réchauffement climatique et la crise de la canicule de 2003 (plus de 15 000 morts en France) a poussé les acteurs publics à se tourner aussi vers la solution du développement de la nature en ville. Celle-ci a été rapidement considérée comme remplissant des fonctions positives pour atténuer le climat urbain : tamponnage des températures, réduction des effets du ruissellement urbain, diminution des pollutions atmosphériques au moins locales. Et puis le grand défi de la lutte contre l’érosion de la biodiversité s’est traduit aussi dans des politiques publiques.
Toutefois, dans un second temps, ce sont les citoyens qui revendiquent non seulement la présence d’espaces verts mais aussi d’être consultés pour tout type d’aménagement urbain avec l’idée fréquente qu’il importe de réserver et de consacrer des espaces de nature en ville. Comme le signalent de nombreux auteurs, la participation des citoyens semble de plus en plus sollicitée dans les processus de décision, en particulier pour ce qui concerne la planification des modes de déplacement urbains et donc les infrastructures de transport (Booth et Richardson, 2001 ; Barford et Sailling, 2015 ; Bulckaen et al., 2016). En outre le caractère cosmopolite des grandes mégapoles accroît cette diversité des besoins et des aspirations et il a été démontré que les formes de revendication et d’aspiration à de la
nature varient en fonction des origines socio-ethniques (Ordonez-Barona, 2017). La ville n’a pas fini d’exprimer ses besoins en naturalité.

Dans les politiques publiques, cette évolution se double actuellement, et en particulier depuis la Loi sur la Biodiversité de 2016, d’une demande de prise en compte de la compensation. Le cadre de la séquence E-R-C est bien étudié dans notre article proposé à la Revue Foncière (cf. point 2-4). Cette séquence s’inscrit dans une longue suite d’efforts pour capitaliser des stratégies visant à diminuer au maximum les effets de l’urbanisation mais aussi des aménagements en dehors de tout type de contexte urbanisé, comme les grandes ILT. Depuis la Loi de 1976 et à travers la Loi éponyme de 2012, la séquence E-R-C s’est imposée dans l’accompagnement des procédures de renaturation liée à la destruction des milieux impactés par des aménagements. Toutefois, au-delà du cadre réglementaire de l’E-R-C et de sa conception dans la droite ligne de la correction des impacts liés à de grands aménagements, allant des carrières aux ILT, la question de la compensation investit maintenant la ville. Cette idée de coefficient de biotope s’est imposée dans certaines grandes métropoles, comme Berlin. Et la Ville de Paris n’est maintenant plus en reste : il y a bien émergence du fait qu’à partir du nouveau Plan Biodiversité, il convient de trouver des aires à renaturer pour répondre aux objectifs assignés par le politique (cf. l’article proposé dans la revue Vertigo au point 2-2). Et au-delà, il s’agit de compenser les destructions de milieux naturels y compris potentiels engendrés par un aménagement. Dans ces conditions se pose la question des ressources, principalement foncières, venant en compensation des espaces aménagés.

RENATU visait à contribuer à résoudre la question des tensions liées à l’augmentation des besoins en mobilités urbaines, dans un contexte de ville soutenable, tout en cherchant à préserver la biodiversité. La FRB a engagé des réflexions qui ont été rassemblées dans des rapports, notamment ceux concernant les valeurs de la biodiversité et qui témoignent de la variété de l’approche en fonction des acteurs concernés (Maitre d’Hotel et Pelegrin, 2012 ; Guiral, 2013)
Enfin, notre objectif a consisté à nous focaliser sur la Métropole du Grand Paris, la MGP, pour trois raisons. En premier lieu, elle cristallise la complexité des formes d’emprises des ILT dans le tissu urbain, complexité et variété, avec une voie d’eau à gabarit international traversant le cœur de l’agglomération, comme Londres, avec des affluents et des canaux, un lacs et un entrelacs de voies ferrées et de routes et d’autoroutes, des trams etc. Ensuite, elle correspond à une des métropoles mondiales les plus denses au monde avec des densités d’habitants par km² qui dépassent la dizaine voire plus double dans certains secteurs, quand des villes comme Berlin atteignent en moyenne des valeurs autour de 5 000 habitants/km². Enfin, l’occasion de l’émergence d’une nouvelle instance, l’EPCI de la Métropole fraîchement établie en 2016 permettait de se poser la question de la pertinence de l’échelle spatiale pour résoudre à la fois la réponse à la demande en nature en ville mais aussi résoudre la question plus qu’épineuse de la stratégie développée pour concevoir et construire une trame de transport en adéquation avec les ambitions de la MGP.

A cet effet, notre projet a consisté à étudier et mettre en œuvre plusieurs points :

- Étudier les formes de naturalité présentes le long des ILT e : il s’agissait de prendre la mesure du rôle positif que peuvent jouer les ILTe en tant qu’attracteurs d’espèces végétales et animales. Sans entrer dans des inventaires bien effectués par des organismes souvent commandités par les opérateurs des ILTe, organismes publics comme le MNHN, organismes associatifs prenant souvent le rôle de bureau d’études comme la LPO, organismes plus clairement établis comme bureaux d’études, notre objectif a été de prendre en compte des éléments d’inventaires et d’études effectués par ces organismes. C’est notamment le cas pour des organismes comme la SNCF. Notamment, à propos de l’espace transilien (Vergnes, 2012)
ou de la petite ceinture, ancienne ligne ferroviaire à l’intérieur de Paris, entièrement désaffectée mais toujours propriété de la SNCF et vouée à un grand nombre d’activités et de paysages. L’inventaire et l’étude ont donné lieu à une thèse (Foster, 2014) ainsi qu’à une étude des services écosystémiques, commandée par la Ville de Paris (Gaborit, 2015).

- **Proposer un indicateur des potentialités d’évaluation de la biodiversité potentielle le long des ILTe** : il s’agissait de construire un indicateur simple et opérationnel qui permette de répondre aux besoins des opérateurs d’évaluer les potentialités de biodiversité, de contrôler l’évolution de l’état des emprises et des actions menées en faveur de la biodiversité.

- **Comprendre les attentes des acteurs** : il s’agissait de comprendre les attentes des élus, des opérateurs et au-delà, ce qui nous a paru original, de prospecter aussi sur les attentes des usagers voire des riverains. En effet, dans un contexte croissant de prise en compte de l’avis des citoyens, il nous a semblé important d’évaluer comment les usagers, notamment, pouvaient prendre en compte cette question de la nature voire de la biodiversité le long des ILTe.

Il convient cependant d’insister sur le décalage entre les ambitions initiales et les réajustements qu’il a fallu effectuer en raisons des circonstances (cf. point 1-4) de réalisation du projet RENATU. Ces circonstances expliquent sans doute que le projet RENATU, qui est resté concentré sur ses grands objectifs généraux, a été malgré tout contraint de fonctionner différemment entre la première année et les deux années suivantes.
1-2. Le mode de fonctionnement et la méthodologie

Auteurs : Pierre Pech, Cédissia About, Nathalie Frascaria-Lacoste, Philippe Jacob, Laurent Simon

1-2-1. le consortium de recherche, la conduite du projet et les séminaires de recherche

Le consortium, les membres de l’équipe

Notre équipe pluridisciplinaire a été construite lors de l’élaboration du projet, au moment de l’AAP du programme ITTECOP, avec la volonté de poursuivre des collaborations amorcées, notamment entre les enseignants-chercheurs et les deux participants de la Ville de Paris, mais aussi entre Nathalie Frascaria-Lacoste et les géographes, Pierre Pech et Laurent Simon, et enfin entre les deux géographes et le juriste, Jean-Philippe Brouant. Le fait de répondre ensemble à l’AAP du programme ITTECOP était pour nous l’occasion de prolonger des liens et des collaborations que nous avions initiés dans les masters de Paris 1 ainsi que dans le cadre du réseau de l’Ingénierie Ecologique à travers l’association Gaë.

Le panel des participants de l’équipe comprenait :

Des étudiants ont été associés au projet RENATU.

Romain Fillion devait effectuer sa thèse dans le cadre de ce projet RENATU et grâce, en partie, aux financements obtenus par la réponse favorable à l’AAP du programme ITTECOP (cf. points 1-3 et 1-4). D’autres étudiants ont été aussi associés aux travaux du projet RENATU, des étudiants de master, notamment.
o celui de Paris en master 1, en géographie environnementale, successivement, Laura Clevenot, Hugo Rochard et Flavia Lifchitz
o celui d’AgroParisTech et de l’université Paris Sud, le master 2 EBE, Laura Thuillier
o celui du master DDMEG, dans le cadre d’un atelier portant sur la perception de la biodiversité et l’action d’acteurs impliqués par la gestion de la biodiversité le long des ILTe de la MGP.
Enfin, entre octobre 2016 et août 2017, Mathilde Riboulot-Chetrit, qui venait de soutenir sa thèse, a pu être recrutée en tant que post-doctorante.

Conduite du projet et coordination
La conduite du projet et la coordination ont constitué la tâche 1 de notre projet. La coordination du projet RENATU a été assurée par le responsable scientifique, Pierre Pech. Celui-ci a été chargé par les membres de l’équipe de centraliser les financements (cf. parties ci-dessous 1-3 et 1-4) et d’organiser la vie du projet. Cela a consisté à être à l’interface entre le programme ITTECOP, en particulier Yannick Autret, Charlène Pagès, chef de projet dans l’entreprise Biotope, et Judith Raoul-Duval, qui est à la tête de son entreprise, SARL, ZOGMA, ainsi que Barbara Livorel de la FRB et les membres du comité de suivi de notre projet. En outre, il s’agissait d’organiser nos réunions de travail. De manière fréquente, toutes les semaines, Pierre Pech a été, avec les étudiants en charge de travaux précis, en réunion de travail mais aussi environ une fois par mois avec les différents autres membres, successivement. Nos activités ont fait l’objet, au moins une fois par trimestre, d’échanges au cours de réunions de travail, le plus souvent programmées au LADYSS, même si certaines réunions ont eu lieu à AgroParisTech, dans le bureau de Nathalie Frascaria-Lacoste ou à l’Observatoire de la Biodiversité de la Ville de Paris où nous avons été accueillis par Philippe Jacob. La synthèse et la mise en forme du rapport final incommen naturellement à Pierre Pech mais les autres membres ont validé et corrigé ce rapport.

Mode de fonctionnement
Le projet RENATU a débuté effectivement en juillet 2014. Notre ambition était de commencer dès l’été 2014, avant la date officielle du lancement, en principe fixée par la signature de la convention. A cette époque, nous avons débuté par un séminaire de travail collectif visant à fixer les enjeux, les ambitions, le programme de travail et les échéances mais aussi les moyens que nous nous étions fixés de mettre en œuvre. Les éléments du programme sont définis selon 7 tâches (Figures 1 et 2) :
- la tâche 1 correspond à la coordination
- la tâche 2 avait pour but de préparer le travail par une recherche bibliographique. En outre, il y avait le travail préalable de définition des entités (milieux de nature – nature en ville – biodiversité – renaturation etc.) étudiées dans ce projet ainsi qu’une typologie des formes de paysages que peuvent prendre les unités d’ILTe. Ce travail a été effectué par Romain Fillion,
sous la direction de Nathalie Frascaria-Lacoste et Pierre Pech, qui étaient ses deux directeurs de thèse.

- La tâche 3 avait pour objectif de comprendre en quoi les ILTe, en milieu urbain, peuvent avoir un rôle d’attracteur pour les espèces, végétales et animales, et en quoi, à partir d’un réservoir de biodiversité, il y a étalement et prolongement des espèces le long de l’emprise dans le tissu urbain. Les ILTe jouent le rôle indéniable de corridor. Ce travail a été conduit par Laura Clévenot, sous la direction de Pierre Pech et de Laurent Simon. Cette étudiante a effectué une analyse de la biodiversité potentielle de part et d’autre d’un des sites Natura 2000 du Département de Seine-Saint-Denis, donc intégré dans la trame urbaine et le territoire de la MGP.

Figure 2 : organigramme de la structure du projet RENATU

- La tâche 4 a correspondu à un des éléments majeurs du projet RENATU. Il s’est agi de construire un indicateur opérationnel de la biodiversité potentielle le long des ILTe. Cet indicateur se devait d’être simple et utilisable par des opérateurs des ILTe, à l’aide de critères d’identification et d’évaluation de la biodiversité potentielle, tout en étant robuste scientifiquement. Dans le prolongement de ce qu’avait amorcé Laura Clévenot, Laura Thuillier puis Flavia Lifchitz ont contribué à la réflexion, à l’élaboration et à la mise en œuvre

La tâche 5 visait à effectuer un travail sur les attendus des opérateurs mais aussi d’analyser les modes opératoires de ces acteurs dans leur approche de la gestion de la biodiversité le long des ILTe. Ces acteurs se sont révélés variés puisque outre leur variété par type d’organismes et donc de modes hiérarchiques de fonctionnement opérationnel sur ces sujets (SNCF, ENGIE, RTE, VNF, RATP), il existe des acteurs externes mais utilisés par les entreprises des ILTe pour assurer l’entretien des emprises. Ce travail a été effectué par un groupe d’étudiant, dans le cadre d’un atelier, sous la forme d’entretiens auprès d’un panel d’acteurs, sous la direction de Pierre Pech.

La tâche 6 a consisté à prendre en compte la manière dont les élus et certains administratifs ou ingénieurs de la toute nouvelle MGP conçoivent d’intégrer la biodiversité dans les politiques publiques du nouvel EPCI. Le travail a été réalisé par Hugo Rochard, au cours de son stage. Il s’est agi, avec Pierre Pech, d’effectuer des entretiens auprès de ces acteurs puis leur traitement analytique. Cela a abouti à un article proposé à la revue VertigO.

La tâche 7 a été consacrée à l’étude des modes d’appréciation des éléments de nature présents dans les emprises des ILT par les usagers et les riverains. C’est Mathilde Riboulot-Chetrit, qui a soutenu une thèse sur les formes d’investissements des habitants, des propriétaires privés, en faveur de la biodiversité en ville (Riboulot-Chetrit, 2015 et 2016) qui a travaillé en collaboration avec Pierre Pech sur cette tâche.

La tâche 8 correspondait aux activités de publication, de transmission et de communication à la fois scientifique et opérationnelle. Elle est détaillée dans le point 1-2-2.

Cependant, au cours de son historique, le projet RENATU s’est caractérisé par deux phases :

- La première, entre 2014 et fin 2015, a correspondu à la phase pendant laquelle, il était prévu que le projet RENATU serve essentiellement de projet support au déroulé de la thèse de Romain Fillon qui s’est inscrit en doctorat à l’automne 2014. Les étudiants du master DDMEG qui ont effectué un travail sur les acteurs opérationnels ainsi que le stage de Laura Clévenot étaient destinés à nourrir la matière de la recherche portée par Romain Fillon au titre de son sujet de thèse dans le cadre du projet RENATU. Comme cela sera évoqué en point 1-4, Romain Fillon a abandonné sa thèse fin 2015 ;
La seconde, entre janvier 2015 et fin août 2017, s’est matérialisée par la prise en charge du projet RENATU par les participants rassemblés autour de Pierre Pech et qui ont décidé, non seulement de poursuivre les recherches amorcées dans le cadre de RENATU mais aussi de s’appuyer sur d’autres étudiants afin d’effectuer ces recherches. Notre ambition a été prioritairement de construire notre indicateur. Deux étudiantes ont successivement travaillé sur cette question, dans le prolongement de ce qu’avait amorcé Laura Clévenot : Laura Thuillier en stage dans le cadre de son master EBE en 2016, puis Flavia Lifchitz, en stage dans le cadre du master de géographie de l’environnement en 2017. La validation du travail effectué par Laura Thuillier devant le jury des écologues du master EBE ainsi que lors de la restitution devant les opérationnels en juin 2016 nous a conforté dans la poursuite et la finalisation de cet indicateur. Cela a justifié l’embauche de Flavia Lifchitz qui a effectué des relevés le long du Tram 2 afin de valider et d’améliorer l’indicateur RENATU élaboré par Laura Thuillier. En outre, au cours de cette phase, nous avons décidé de recruter Mathilde Riboulot-Chetrit en post-doc, pour qu’en raison de ses compétences, elle participe au traitement des données statistiques de l’indicateur et qu’elle effectue un travail auquel nous n’avions pas pensé initialement, qui a consisté à sonder les formes d’approche ou/et d’appréciation des usagers d’ILT de la qualité de la biodiversité le long ou à proximité des emprises de ces ILT. C’est la raison qui a fait que nous avons choisi de travailler le long du Tram 2 qui combine des passages variés plus ou moins intégrés à des espaces urbains denses mais aussi parce qu’il nous a semblé plus efficace et plus facile d’effectuer des enquêtes auprès des usagers d’une ILT comme un tram.

Au total, comme cela est démontré dans le point 1-4, le projet RENATU s’est caractérisé par une forte capacité de résilience malgré des difficultés assez importantes (voire graves pour certaines) parce qu’humainement l’adhésion des participants du noyau initial a été forte, solidaire, mais aussi parce que nous avons eu la chance de travailler avec des étudiants de grande qualité. Et enfin aussi parce que RENATU s’est trouvé intégré à un noyau d’équipes et de recherches qui ont servi de facteurs dynamique de relance et de relais au projet RENATU, en particulier l’ANR ECOVILLE, la chaire BEGI et le master BIOTERRE.

1-2-2. Communications, colloques, publications

Deux séminaires de restitution

Si, comme indiqué dans le chronogramme de la Fig.1, les activités de recherche ont été conduites par tous les membres du panel, dans le cadre de travaux effectués sur le site du LADYSS, rue Valette, nous avons organisé deux séminaires de restitution ouverts au public organisés :
- le 22 juin 2016, avec présentation des travaux menés au cours de l’année 2015-2016
Une ultime séance de présentation, limitée aux membres de notre équipe, s’est tenue le 26 juin 2017 avec présentation des travaux de l’année 2016-2017 et présentation du plan prévu pour le rendu final du projet RENATU.

Colloques et réunions scientifiques

L’équipe a été conduite à proposer des restitutions publiques lors de réunions scientifiques, notamment à Nice en octobre 2015, dans le cadre du colloque annuel du programme ITTECOP, en septembre 2016, dans le cadre du colloque international IENE à Lyon et à Salt Lake City, dans le cadre du colloque international ICOET, en mai 2017. Pierre Pech s’est déplacé pour présenter l’avancée des travaux du projet RENATU à Nice en 2015, ainsi qu’à Lyon en 2016 et c’est Laura Clevenot qui a effectué le déplacement pour une présentation orale et un poster à Salt Lake City. Laura a eu un **Student Award** pour le poster réalisé à partir des travaux effectués dans le cadre du projet RENATU.

Publications

Sans doute du fait de la multiplication des participants au lieu d’avoir un seul doctorant, le projet RENATU débouche sur un nombre assez conséquent de publications. Le principe a été de co-signer les articles puisque peu ou prou, à quelques exceptions, tous les travaux ont été conduits par un étudiant sous la houlette du responsable scientifique, Pierre Pech, mais aussi d’à peu près tous les membres du projet. Certaines publications sont croisées avec d’autres programmes ou projets de recherche. Enfin, il ne faut pas oublier que ce projet RENATU s’est inscrit comme étant porté par la chaire BEGI, chaire d’entreprise associant l’Université Paris 1 et le groupe Eiffage, chaire ayant pour vocation de développer la recherche notamment à travers une bourse de thèse, portant généralement sur les impacts des ILT sur la biodiversité, mais aussi à l’origine de la création du master BIOTERRE (www.masterbioterre.com). En outre, notre projet RENATU s’inscrit dans une dynamique de recherches qui concernent les ILT mais aussi les questions de nature en ville. De ce fait, certains travaux dans RENATU ont été menés dans un esprit de conciliation de nos objectifs scientifiques développés dans le cadre de l’ANR ECOVILLE que dirige Philippe Clergeau. Au moins deux publications (Tableau 1) combinent des objectifs communs à ces deux projets de recherche, RENATU et ECOVILLE.
<table>
<thead>
<tr>
<th>Titre de l’article</th>
<th>Année, Revue</th>
<th>Auteurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le cas de l’E-R-C – Eviter-Réduire-Compenser – pour les infrastructures linéaires de transport : un double effet sur le foncier</td>
<td>Accepté pour publication dans la Revue Foncière</td>
<td>Pierre Pech, Laura Clévenot, Jean-Marc Fourès, Delphine Giney, Sarah Lavaux, Joachim Lémeri, Mathilde Riboulot-Chetrit, Laura Thuillier</td>
</tr>
<tr>
<td>L’indicateur RENATU</td>
<td>En cours de rédaction et de finalisation avant traduction et proposition dans une revue comme Urban forestry & Urban Greening ou Urban Ecosystems ou Ecological Indicators</td>
<td>Pierre Pech, Laura Thuillier, Flavia Lifchitz, Cédissia About, Nathalie Frascaria-Lacoste, Philippe Jacob, Mathilde Riboulot-Chetrit, Laurent Simon</td>
</tr>
<tr>
<td>Approche de la perception de la biodiversité par les usagers et comparaison avec les données de l’indicateur RENATU</td>
<td>En cours de rédaction et finalisation avant traduction et proposition dans une revue comme Cities ou Urban forestry & Urban Greening ou Urban Ecosystems</td>
<td>Mathilde Riboulot-Chetrit, Cédissia About, Nathalie Frascaria-Lacoste, Philippe Jacob, Laurent Simon, Pierre Pech</td>
</tr>
</tbody>
</table>
1-3. Fonctionnement financier

Auteur : Pierre Pech, Cédissia About, Nathalie Frascaria-Lacoste, Philippe Jacob, Laurent Simon

Le projet RENATU a été initié par la réponse à l’AAP du programme ITTECOP et a largement fonctionné avec les financements attribués par la FRB dans le cadre de la convention. Il s’agissait, selon la convention, d’un financement total de 79290,00 € répartis selon le calendrier suivant :

Tableau 3 : les financements du projet RENATU par la FRB

<table>
<thead>
<tr>
<th></th>
<th>Financement en €</th>
</tr>
</thead>
<tbody>
<tr>
<td>30% à la signature</td>
<td>23 787,00 €</td>
</tr>
<tr>
<td>30% rapport intermédiaire</td>
<td>23 787,00 €</td>
</tr>
<tr>
<td>30% rapport final</td>
<td>23 787,00 €</td>
</tr>
<tr>
<td>10% après approbation du CS</td>
<td>7 929,00 €</td>
</tr>
<tr>
<td>TOTAL</td>
<td>79290,00 €</td>
</tr>
</tbody>
</table>

La convention a été signée le 10 septembre 2014, entre la FRB et le Président de l’université Paris 1 puisqu’il avait été fait le choix de localiser les financements là où, initialement, était inscrit le doctorant, Romain Fillon, à l’école doctorale de géographie. Initialement, cette bourse de thèse ne pouvait fonctionner qu’avec des compléments, puisqu’une allocation doctorale équivaut à environ 90 000 euros sur trois ans. Nous avions prévu, dès le départ, d’utiliser une partie des financements que nous gérons dans le cadre du master BIOTERRE, financements liés à un ensemble de provenances dont la chaire Eiffage, mais aussi d’autres conventions et les revenus de l’alternance.

Comme expliqué un peu plus loin dans le point 1-4, cet étudiant a abandonné à l’issue de la première année, non sans avoir contribué à l’avancée de la recherche (cf. tableau 1 sur les publications). A notre demande, Yannick Autret et Barbara Livorel ont répondu que le restant des financements liés au projet RENATU validé par ITTECOP et par la FRB pouvait être utilisé pour la bonne poursuite du projet, que ce soit en financements de stages, d’un post-doc ou de financements d’activités autres comme des colloques par exemple.

Toutefois, nos activités ont largement été développées grâce à l’embauche d’étudiants dont les gratifications ont été financées sur d’autres sources de financements, ce que nous développons dans le tableau 3. En particulier, il nous a paru utile de coupler certaines activités du projet RENATU avec le programme ANR ECOVILLE. Ce fut notamment le cas pour le travail effectué dans le cadre du stage de Hugo Rochard sur la perception des élus de la Métropole du Grand Paris sur la biodiversité. La publication proposée actuellement à la revue *VertigO* est le témoin de ce double rattachement à ces deux projets de recherche assez proches sur ce sujet. En outre, dans le cadre des questions de fonciers autour de la question de la compensation, il nous a paru judicieux aussi de faire prendre en charge le
travail effectué par Laura Thuillier. Là encore l’article proposé à la Revue Foncière est en partie le reflet de cette double thématique.
COMPTABILITE EFFECTIVE DU PROJET RENATU

DEPENSES

Frais de personnel

<table>
<thead>
<tr>
<th>Date</th>
<th>Personne</th>
<th>Nature</th>
<th>Montant</th>
</tr>
</thead>
<tbody>
<tr>
<td>31/12/2015</td>
<td>Romain Fillon</td>
<td>Rémunération</td>
<td>36 270,97 €</td>
</tr>
<tr>
<td>31/12/2015</td>
<td>Laura Clevenot</td>
<td>Gratification (stage)</td>
<td>1 630,00 €</td>
</tr>
<tr>
<td>31/12/2016</td>
<td>Romain Fillon</td>
<td>Rémunération</td>
<td>4 908,88 €</td>
</tr>
<tr>
<td>31/12/2016</td>
<td>Mathilde Riboulot-Chetrit</td>
<td>Rémunération</td>
<td>11 157,85 €</td>
</tr>
<tr>
<td>31/12/2016</td>
<td>Laura Thuillier</td>
<td>Gratification (stage)</td>
<td>2 445,00 €</td>
</tr>
<tr>
<td>31/12/2016</td>
<td>Hugo Rochard</td>
<td>Gratification (stage)</td>
<td>1 630,00 €</td>
</tr>
<tr>
<td>31/08/2017</td>
<td>Mathilde Riboulot-Chetrit</td>
<td>Rémunération</td>
<td>29 717,69 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

Frais fonctionnement : colloques, impression, voyages

<table>
<thead>
<tr>
<th>Date</th>
<th>Auteur</th>
<th>Description</th>
<th>Montant</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/06/2016</td>
<td>FRB</td>
<td>inscription colloque IENE - Lyon P.Pech</td>
<td>250,00 €</td>
</tr>
<tr>
<td>09/06/2016</td>
<td>FRB</td>
<td>inscription colloque IENE - Lyon J-M.Foures</td>
<td>250,00 €</td>
</tr>
<tr>
<td>26/08/2016</td>
<td>Copyself</td>
<td>impression poster - colloque IENE - Lyon</td>
<td>47,00 €</td>
</tr>
<tr>
<td>27/08/2016</td>
<td>Copyself</td>
<td>impression poster - colloque IENE - Lyon</td>
<td>46,00 €</td>
</tr>
<tr>
<td>01/09/2016</td>
<td>SNCF</td>
<td>voyage colloque IENE - Lyon aller</td>
<td>102,00 €</td>
</tr>
<tr>
<td>02/09/2016</td>
<td>SNCF</td>
<td>voyage colloque IENE - Lyon retour</td>
<td>85,00 €</td>
</tr>
<tr>
<td>31/08/2017</td>
<td>Mission Clevenot Salt-Lake-City</td>
<td>Inscription colloque, voyage, séjour, impression poster</td>
<td>2 207,21 €</td>
</tr>
<tr>
<td>31/08/2017</td>
<td>Mission Mathilde Riboulot-Chetrit</td>
<td>Participation formation Graphab</td>
<td>339,10 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

Total général 91 086,70 €
FINANCEMENTS

<table>
<thead>
<tr>
<th>FINANCEMENTS</th>
<th>Description</th>
<th>Montant</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRB</td>
<td>30% à la signature</td>
<td>23 787,00 €</td>
</tr>
<tr>
<td></td>
<td>30% rapport intermédiaire</td>
<td>23 787,00 €</td>
</tr>
<tr>
<td></td>
<td>30% rapport final</td>
<td>23 787,00 €</td>
</tr>
<tr>
<td></td>
<td>10% après approbation du CS</td>
<td>7 929,00 €</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>79 290,00 €</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AUTRES FINANCEMENTS</th>
<th>Description</th>
<th>Montant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programme ECOVILLE</td>
<td>Gratification Hugo Rochard et Laura Thuillier</td>
<td>4075,00 €</td>
</tr>
<tr>
<td>Financements BIOTERRE</td>
<td>autres stages et dépassement</td>
<td>7 721,70 €</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>11 796,70 €</td>
</tr>
</tbody>
</table>

Total général 91 086,70 €

Au total, le projet RENATU s’est intégré à des logiques de recherche déjà amorcées dans le cadre d’équipes, de structures avec qui ont été partagées des ressources. Les financements initialement orientés à partir de l’AAP du programme ITTECOP pour rémunérer une bourse de thèse se sont révélés sans doute plus fructueux lorsqu’il s’est agi de convertir le projet et les financements vers un autre mode de fonctionnement que la simple gestion d’une recherche doctorale.
1-4. Les difficultés rencontrées : entre aléas et blocages et capacité de résilience du projet RENATU

Auteur : Pierre Pech, Cédissia About, Nathalie Frascaria-Lacoste, Philippe Jacob, Laurent Simon

1-4-1. Les difficultés personnelles : du drame de l’été 2014 à la gestion de l’abandon du thésard

Dès l’été 2014, un drame est survenu : notre collègue Jean-Philippe Brouant est décédé tragiquement. Cette perte humaine nous a affectés profondément puisque le panel des personnes avait été choisi pour des raisons d’efficacité scientifique mais aussi pour des raisons d’affinités amicales et personnelles. Pour le cadre et la conduite du projet RENATU, et au nom de notre affection pour notre collègue Jean-Philippe il a été décidé de poursuivre l’étude de la question de la prise en charge de la biodiversité par les élus, par les usagers et par les opérateurs : ces travaux ont été confiés à des groupes d’étudiants, comme cela a été évoqué dans le point 1-2, sur la méthodologie générale du projet.

L’abandon de la thèse par Romain Fillon : une des raisons du financement obtenu dans le cadre du projet RENATU dans le cadre de l’AAP d’ITTECOP de 2013-2014 était liée à l’embauche partielle (complétée par des crédits propres à l’équipe du LADYSS et de Paris 1 à travers notamment le master BIOTERRE cf. point 1-3) d’un doctorant. Celui-ci a amorcé, au cours de sa première année de thèse, un travail de prospection auprès des opérateurs, notamment en effectuant le suivi des étudiants de l’atelier du master. Il a aussi déployé une activité de recension bibliographique afin d’effectuer l’état de l’art. Malheureusement, pour des raisons personnelles, cet étudiant en thèse a renoncé dès la deuxième année à poursuivre son travail de recherche. Sa participation, au cours de sa première et unique année de thèse, a été profitable pour RENATU puisqu’il a effectué un gros travail de recherche bibliographique que les étudiants suivants ont eu à disposition. Romain Fillon a également démarché de nombreux acteurs qui ont été interrogés par les étudiants de l’atelier du master DDMEG. C’est lui aussi qui a été en interface avec la personne de la SNCF (cf. point 1-4-3) en ayant fait son possible pour dénouer l’écheveau inextricable et paradoxal qui a abouti à la réorientation de notre protocole d’élaboration de l’indicateur. Romain Fillon a rédigé un article paru dans les Cahiers Palladio.

Ce renversement nous a conduit à recruter sur les financements restants des étudiants de master 1 et de master 2 en stage et une post-doctorante, Mathilde Riboulot-Chetrit (cf. point 1-2-1). Notons que cette nouvelle orientation dans la conception et l’approche de notre projet a eu pour conséquence de travailler avec un panel plus varié de jeunes, très motivés et dynamiques. Ceux-ci ont eu à cœur
d’effectuer les travaux que nous leur avons confiés mais ils ont eu une force imaginante et créatrice qui a beaucoup influé sur le dynamisme de notre projet.

Les étudiants de master, géographes, Laura Clévenot, Hugo Rochard et Flavia Lifchitz ont largement été capables de développer avec une grande application les sujets que nous leur avons confiés. Les soutenances de master, appuyées par des rapports et des exposés oraux de qualité, ont témoigné de leur grande capacité à s’investir dans des pratiques de recherche. Tous les trois ont été recrutés successivement dans le master BIOTERRE. Laura Clévenot poursuit par une thèse financée dans le cadre de la chaire BEGI, Paris 1 – Eiffage. Elle travaille sur des questions de biodiversité et d’ILTe. Laura Clévenot a rédigé l’article paru dans *Cybergeo* (cf. tableau 1) et elle a participé au colloque international ICOET de Salt-Lake-City où elle a été récompensée d’un Student Award pour son poster concernant le travail effectué dans le cadre de RENATU. Flavia Lifchitz a intégré le master BIOTERRE où elle vient de débuter un contrat d’alternance sur un gros chantier de Vinci. Hugo Rochard termine son stage à Vancouver auprès de notre collègue Meg Holden avec qui il envisage de prolonger son travail par une thèse.

Laura Thuillier, étudiante écologue du master EBE a été recrutée pour le projet RENATU dans le cadre de ses 6 mois de stages. Elle a travaillé avec une très grande application, à la fois pour effectuer une analyse de la bibliographie et la mise au point, avec les membres du projet, de l’indicateur RENATU. Cette étudiante, brillante, a si bien réussi sa soutenance, devant le jury du master EBE, qu’elle a été recrutée par notre collègue Nathalie Machon du MNHN pour poursuivre en thèse CIFRE avec le groupe STORENGY.

Mathilde Riboulot-Chetrit a eu un rôle incontestable de réorientation de notre projet initial en s’attachant à prospecter les formes d’approches et d’appropriation de la nature des usagers des ILTe et des riverains. C’est elle qui a joué un rôle décisif d’accompagnement dans les activités de mise en œuvre des questionnaires et d’analyse et de traitement des données statistiques. Sa présence a été une véritable plus-value pour RENATU.

Conclusion : il faut souligner ici la très grande bienveillance et la très grande capacité du responsable du programme ITTECOP, Yannick Autret. Il a su sentir nos difficultés, les comprendre et nous accompagner pour permettre la bonne poursuite de RENATU : en particulier, la souplesse dans la capacité de réorienter les financements du projet RENATU, qui étaient initialement affichés pour un doctorant, pour nous laisser libres d’effectuer des recrutements diversifiés de jeunes étudiants de talents qui a été un gage de réussite.

Une capacité de management souple, à l’écoute et soucieuse de favoriser des ajustements en fonction d’aléas, constitue une indéniable qualité dans la gestion de gros programmes de recherche.
1-3-2. Les manquements et les défauts de la gestion des financements par la Direction de la Recherche de l'université Paris 1

Afin de faciliter les comptes, la totalité des participants du panel du projet RENATU avait décidé de regrouper l’intégralité du financement acquis dans le cadre de l’AAP d’ITTECOP sur un seul centre, en l’occurrence l’université Paris 1. Il s’agissait de privilégier l’un des établissements universitaires, celui dans lequel était inscrit en thèse le thésard, lors du projet initial, Romain Fillon. Le but était de rendre a priori plus simple la gestion du financement du projet RENATU.

Il est certain que nous n’avions eu aucun problème, initialement, à faire prendre en charge la rémunération du thésard par la DIRVAL, Direction de la Recherche et de la Valorisation de Paris 1, bien rodée pour ce type de travail.

A l’issue de l’année 2015, quand, à sa demande, il s’est agi de mettre fin au contrat doctoral de Romain Fillon, la Direction de la Recherche et de la Valorisation de Paris 1 a eu des difficultés à effectuer une bascule des financements restants pour d’autres usages. Il a fallu un message très clair et affirmatif de Yannick Autret en charge du programme ITTECOP pour nous confirmer que les financements obtenus dans le cadre du projet RENATU étaient bien destinés à la conduite de ce projet et que nous pouvions en disposer comme nous le souhaitions pour la suite de nos activités de recherche dans le cadre de ce projet. Ce message, adressé par Yannick Autret et conforté par Barbara Livorel (FRB), était plus qu’utile parce que la Direction de la Recherche et de la Valorisation de Paris 1 estimait que seul comptait le projet de thèse et non pas le projet de recherche RENATU. Tout du moins, il aurait été question de rembourser le restant des financements car puisque le doctorant renonçait à sa thèse la DIRVAL estimait que le projet devait s’arrêter. S’en est suivi une période de tension.

A l’issue de ce changement de destination des financements, pourtant accepté par le responsable du programme ITTECOP, Yannick Autret, avec confirmation de Barbara Livorel de la FRB, il a été très difficile d’obtenir une réactivité de la Direction de la Recherche et de la Valorisation de Paris 1, ce qui s’est traduit, d’une part, par de grosses tensions dans les rapports entre la Direction de la Recherche et de la Valorisation et Pierre Pech et, d’autre part, par une absence de capacité de contrôle des comptes effective par Pierre Pech qui n’a plus eu accès à des bilans financiers entre janvier 2015 et mai 2017. Toutefois, des frais ont été effectivement demandés par le responsable du projet RENATU, Pierre Pech : frais liés aux stages d’étudiants, aux colloques et aux déplacements inévitables ainsi qu’aux inscriptions, notamment le colloque international IENE à Lyon en 2016 et le colloque ICOET à Salt-Lake-City en 2017. Ces demandes de dépenses ont bien été effectuées dans les délais et en particulier en tenant compte des contraintes mêmes des appels à communication, que ce soit le colloque d’ITTECOP à Nice en octobre 2015, le colloque IENE à Lyon en septembre 2016 et le colloque à Salt Lake City en 2017 : il existe des contraintes notamment pour réserver les billets d’avion (pour Salt Lake City) et pour les inscriptions aux colloques, avec des délais d’inscription et des formalités...
d’inscription en ligne sur le site web : le colloque ICOET à Salt-Lake-City ne pouvait pas fournir de facture, comme réclamé par la Direction de la Recherche et de la Valorisation.

Cependant, pour toutes ces échéances, l’absence de réaction de la part de la Direction de la Recherche et de la Valorisation de Paris 1 a donc inévitablement poussé Pierre Pech à engager sur ses deniers personnels ces dépenses. Ce fut le cas pour :

- l’inscription au colloque IENE de Lyon, août-septembre 2016
- les frais de déplacement pour le colloque IENE de Lyon, août-septembre 2016
- l’impression des deux posters présentés au colloque IENE de Lyon, août-septembre 2016
- l’inscription de Laura Clevenot au colloque ICOET de Salt Lake City, mai 2017
- le déplacement en avion de Laura Clevenot au colloque ICOET de Salt Lake City, mai 2017

Les remboursements ont été véritablement très compliqués à obtenir.

Je comprends parfaitement les procédures administratives et la surcharge de travail du service chargé de la gestion des questions de recherche dans une université comme celle de Paris 1 Panthéon-Sorbonne.

En mars 2017, je m’en suis inquiété auprès de la Présidence de Paris 1. Une réunion a été organisée : la vice-présidente, chef de cabinet de la Présidence, Madame Sabine Monnier, et le Vice-Président délégué à la Recherche, Monsieur Pierre Bonin, m’ont reçu et m’ont entendu. Ils sont pris la décision d’organiser le transfert des financements du projet RENATU au LADYSS, UMR à laquelle je suis rattaché en tant qu’enseignant-chercheur. La gestion du budget concernant les frais généraux a été transférée au LADYSS mais pas celle liée au personnel, ce qui a compliqué énormément les choses. Globalement, nous avons été soumis à une très grande opacité dans la tenue des comptes concernant les financements RENATU-FRB : même la responsable administrative du LADYSS a eu les plus grandes difficultés pour obtenir des renseignements. J’ajoute, pour terminer, qu’au cours de la durée comprise entre janvier 2016 et juillet 2017, il a été rigoureusement impossible d’obtenir de la part de la Direction de la Recherche et de la Valorisation de Paris 1 une trace des écritures comptables et du suivi des financements du projet RENATU. Manque de confiance envers les enseignants-chercheurs et/ou saturation des activités d’un service universitaire ?

Au final, le résultat a été qu’en juin 2017, la Direction de la Recherche et de la Valorisation a annoncé à la responsable administrative du LADYSS, qui m’a relayé cette information, qu’il y avait eu un dépassement dans les dépenses par rapport aux financements attribués par le programme ITTECOP, dépassement (si j’ai bien compris) qui s’élève à 6129,20 €. Heureusement, dès le départ (cf. point 1-3), les travaux du projet RENATU devaient être très liés au master BIOTERRE et la Direction des Affaires Financières de Paris 1 a utilisé des financements du master BIOTERRE pour boucler les derniers versements de salaires de la post-doctorante qui a été recrutée pour RENATU.

Je tiens à ajouter, tout de même, que cette très forte tension (je laisse les propos subis) a été la cause de ma maladie entre mars et mai 2017. J’ai tenu bon parce que le projet RENATU me tenait à cœur et que
les étudiants comme mes collègues m’ont très fortement soutenu. Qu’ils soient d’ailleurs chaleureusement remerciés.

J’avoue qu’en tant que responsable scientifique, et en raison de ma saturation dans ma charge de travail en tant qu’enseignant-chercheur, j’ai laissé la Direction de la Recherche et de la Valorisation gérer la partie comptable et les financements du projet RENATU. J’aurais dû m’appliquer à effectuer moi-même, dès le départ, un suivi sur un tableur, des dépenses et des crédits disponibles. Mais le mode de fonctionnement et de gestion des projets de recherche, dans les établissements universitaires contribue à déresponsabiliser les responsables de projet : il semble obsolète, infantilisant et inefficace.

Conclusion - recommandation : dans tous les services publics, notamment universités ou organismes de recherche, le responsable scientifique du projet de recherche n’a pas la main sur les financements : il n’est pas autonome (je ne connais que l’IAE de Paris qui peut fonctionner de la sorte). L’administration de l’université est seule gestionnaire des financements. Cela accroît le risque de déresponsabilisation du responsable de projet. Il est donc essentiel que le responsable scientifique puisse bénéficier d’un suivi clair et précis des crédits et des dépenses. Toutefois, à l’heure actuelle, les responsables de projets devraient avoir accès à une capacité d’autonomie qui allégerait d’ailleurs les services administratifs. Il est indispensable que les responsables des projets scientifiques rendent des comptes et qu’une procédure rigoureuse soit appliquée. Cependant, dans les établissements publics, le caractère infantilisant, avec le manque d’autonomie, l’esprit de suspicion à l’égard des responsables de projets, des enseignants-chercheurs pour la plupart, nuit à l’efficacité de la gestion fluide des projets.

1-3-3. Les difficultés rencontrées dans les relations avec certains acteurs des ILTe

Afin de faciliter l’action des responsables et des membres des projets labellisés par le programme ITTECOP, il faut noter le rôle très bienveillant et très efficace des membres du programme ITTECOP, au premier rang desquels il faut rendre un très grand hommage à Yannick Autret, toujours disponible et à l’écoute. Il faut signaler aussi le rôle particulièrement utile et efficace de membres du conseil d’experts qui sont désignés pour chaque projet. Je tiens à rendre hommage à Jos Jonkhof qui nous a aidés de ses conseils et nous a accompagnés tout au long de nos travaux. De même, je tiens à remercier Jean-François Lesigne de RTE et Anne Barbero de la SNCF de leurs conseils avisés. Jean-François a été très bienveillant et a participé à nos deux réunions de restitution manifestant un intérêt et soulevant des questions pertinentes qui nous ont poussés à creuser nos investigations. Je sais qu’à travers Anne Barbero, la SNCF était disposée à accueillir et à être à l’écoute de notre projet et donc à entendre nos protocoles d’analyse de l’état des milieux sur les emprises. Nous avons compris très rapidement que ces analyses ne pouvaient pas être accomplies dans l’emprise pour des questions de sécurité. Le
conseil d’Anne Barbero a été alors d’effectuer des analyse au plus près des infrastructures et non pas à l’intérieur. Cela a été fructueux parce qu’au cours des travaux menés avec Laura Thuillier, Flavia Lifchitz et Mathilde Riboulot-Chetrit nous avons adapté nos protocoles d’échantillonnage en respectant le plus scrupuleusement les consignes des opérateurs, SNCF et RATP.
Cependant, dans la réalité du terrain, les choses n’ont pas toujours été si simples. En particulier, pour obtenir des contacts, si nous avons pris la décision de faire marcher notre propre réseau, en contactant directement certains Correspondant Locaux Environnement de la SNCF, il faut noter que les réticences d’une personne, Johanne Foret nous ont vraiment surpris, celle-ci tenant un discours dénigrant notre projet, pourtant co-financé par la SNCF, dans le cadre du programme ITTECOP et du CILB. Pour résumer, il fallait se cantonner à prendre sur le web les informations fournies par la SNCF qui avait déjà tout traité. Le résultat de cela a notamment été qu’au cours du stage de Laura Thuillier, dans le cadre de l’élaboration de l’indicateur RENATU, nous avons eu de très grandes difficultés pour effectuer les échantillonnages nécessaires. Laura a pu effectuer des mesures pour élaborer l’indicateur dans des conditions difficiles ainsi qu’en petit nombre, ce qui a fragilisé nos analyses statistiques.
En 2017, pour prolonger le travail effectué sur l’indicateur RENATU et multiplier des échantillonnages le long d’ILTe, nous avions décidé de nous intéresser au Tram 2, infrastructure de la RATP, apparemment aisément accessible au public, dans ses stations mais aussi a priori ouverte sur les emprises... il était évident là aussi que nous ne voulions pas nous mettre en porte-à-faux en investissant des secteurs de l’emprise inaccessibles pour des raisons de sécurité. Flavia Lifchitz et Mathilde Riboulot-Chetrit ont effectué les mesures à l’aide de l’indicateur RENATU et ont réalisé des enquêtes auprès des usagers. Toutefois, nous avons eu de grandes difficultés auprès de la RATP, avec une fin de non-recevoir de la part du responsable du T2 que nous avions contacté pour lui proposer nos résultats et les partager avec lui.
Le projet RENATU nécessitait bien du terrain, un échantillonnage mais dans bien des cas, les organismes, issus d’anciennes structures publiques ont fait montre d’une suspicion et de réticences voire d’un certain mépris. Il a donc fallu avancer notre projet malgré ces désagréments et notre indicateur a pu être construit en intégrant ces difficultés.
Le projet RENATU est un projet intégré à visée scientifique et opérationnelle. Cette question de la fusion entre l’opérationnel et la recherche fondamentale est depuis plusieurs années abordée par des écologues. Pour certains (Barot et al., 2015), elle représente un va-et-vient incessant et fructueux : sans questionnements pour résoudre des problèmes concrets, opérationnels, il est difficile d’innover fondamentalement. A fortiori dans les sciences environnementales, il semble assez improbable que les questions traitées ne soient pas confrontées au réel et à des questions de gestion. L’écologie mais aussi la géographie de la conservation se sont emparées de ce sujet (Gaudet et Mathevet, 2015). Notre projet vient confirmer cette double posture d’ancrage de la recherche dans ses relations avec l’opérationnel et d’une certaine validation des pratiques opérationnelles par les questions posées par les démarches scientifiques.

Le balancement entre les formes d’approche sur ce qu’est la biodiversité et/ou la nature en ville, et sur qui évalue, constitue un vrai questionnement de fond. Les acteurs politiques et opérationnels semblent confrontés aussi à ces nécessités de prendre en compte les aspirations et les formes d’approches des usagers, par exemple. Des solutions uniquement techniques ne peuvent être considérées comme satisfaisantes dans la gestion de la nature en ville.

Notre approche, au sein du projet RENATU, est très reliée à l’ingénierie écologique. En effet, l’ingénierie écologique, comme le définit B.Chocat (2015), « ... désigne les savoirs scientifiques et les pratiques, y compris empiriques, mobilisables pour la gestion de milieux et de ressources, la conception, la réalisation et le suivi d’aménagements ou d’équipements inspirés de, ou basés sur les mécanismes qui gouvernent les systèmes écologiques. Elle fait appel à la manipulation, le plus souvent in situ, parfois en conditions contrôlées, de populations, de communautés ou d’écosystèmes, au pilotage de dynamiques naturelles et à l’évaluation de leurs effets désirables ou indésirables. C’est une ingénierie centrée sur le vivant envisagée comme moyen ou objectif de l’action. » (Chocat, 2015). L’ingénierie écologique se déploie à la fois dans un champ scientifique mais aussi technique : en effet, elle a recours aux savoirs scientifiques et fondamentaux de la recherche en écologie, tout en les appliquant à des projets concrets. Elle manipule des systèmes écologiques et met au point des outils pour optimiser la gestion des ressources naturels et la provision de services écosystémiques, mais aussi pour réhabiliter des écosystèmes dégradés, réintroduire des espèces tout en créant un climat favorable à l’homme et à la biosphère.

Nos résultats dans la deuxième partie sont le reflet de cette double approche.
Références bibliographiques de cette première partie

Bulckaen J., Keseru I., Macharis C., 2016. Sustainability versus stakeholder preferences: searching for synergies in urban and regional mobility measures, Research in Transportation Economics, 55: 40-49

Chocat B., 2015. L’ingénierie écologique : peut-on vraiment laisser faire la nature ?, Méli Mélo

2. Les thèmes et les objets traités

Les résultats s’organisent essentiellement autour des publications. Cependant le premier point, 2-1, constitue une synthèse des notions utilisées pour le projet RENATU. Cette synthèse figure comme une analyse de la bibliographie mais fait aussi référence aux dires des acteurs rencontrés (2-2 et 2-3). Elle fait aussi référence à ces questions évoquées lors du travail effectué par Mathilde Riboulot-Chetrit à travers les questionnaires auprès des usages.
2-1. La question de la renaturation : nature en ville ? biodiversité ?

Auteurs : Pierre Pech, Cédissia About, Nathalie Frascaria-Lacoste, Philippe Jacob, Laurent Simon

2-1-1. La reconnaissance d’une nature et d’une biodiversité en ville

Pour les formes d’approche et les conceptions occidentales, sensu lato, la nature s’inscrit comme étant en opposition à tout ce qui est artificiel, c’est-à-dire conçu et construit par les sociétés humaines. Par leurs outils et leurs capacités à transformer de la matière en éléments structurés et transformés par des procédés qui empruntent inévitablement à de la chimie et de la physique, mais qui résultent d’une construction mentale, celles-ci produisent des objets qui diffèrent de ce qui existe dans la nature. Elles ne sont pas les seules à le faire (De Waal, 2013) mais dans la culture occidentale la coupure radicale s’effectue entre les sociétés humaines et ce qui est considéré comme le reste du vivant et de la matière et qui est appelé la nature.

A fortiori, une ville semble rassembler des bâtiments et des surfaces artificiels et des flux qui échappent en partie aux seules dynamiques naturelles. On peut dire que la ville s’est sans doute construite à l’origine pour s’émanciper du monde de la nature et des dangers qui viennent de l’extérieur. La ville est à la fois lieu du pouvoir mais aussi lieu de solidarité et de refuge permettant de lutter collectivement contre les menaces, celles naturelles sous la forme de calamités, le froid ou la sécheresse, ou les prédateurs.

Si Philippe-Auguste fait paver les rues de Paris pour éviter la boue qui les jonche et si Louis XIV impose que toutes les façades des maisons initialement construites en torchis soient revêtues de plâtre pour éviter la propagation des incendies, il faut attendre surtout le 19ème siècle pour que s’élabore un urbanisme volontairement hygiéniste, visant à exclure les animaux du cœur du tissu urbain, à couvrir les cours d’eau utilisés comme collecteurs pour récupérer et canaliser les eaux domestiques usagées : le dessein architectural et urbanistique est bien de chasser la nature de la ville. La ville est la matérialisation de la civilisation et les quartiers les plus insalubres sont ceux dans lesquels réside une nature résiduelle, faite de friches que fréquentent les rats symboles des maladies des âges anciens comme la peste. Les formes de ségrégation de l’espace urbain naissent aussi en grande partie sous la pression de cette contrainte, avec la localisation des espaces de production, sales et bruyants, ainsi que les populations plus pauvres, en périphérie des cœurs urbains réservés à l’habitat des classes aisées ainsi qu’aux services administratifs et aux activités culturelles de haut niveau. Cependant, dès la période pré-industrielle la ville se dote de parcs et de jardins agrémentés de pièces d’eau. Ce sont des espaces de nature contrôlés et le 19ème siècle, notamment en Angleterre puis dans d’autres villes, y compris à Paris, dans les parcs comme Montsouris ou des quartiers haussmanniens, permet que se développent des parcs urbains intégrant des formes moins contrôlées de nature. La ville moderne, telle qu’elle est conçue par l’architecte Le Corbusier et les principes définis dans le cadre de la charte d’Athènes en 1933, s’adapte aux modes de vie industrialisée et standardisée. Le développement urbain
affecte les villes comme Chicago, Toronto et New York où les gratte-ciels rivalisent de hauteur au cours des années 1920-1930. Dans les années d’après-guerre, en suivant toujours les principes de la Charte d’Athènes, l’urbanisme a connu un essor fulgurant dû à la nécessité de loger un exode rural massif et de rénover des quartiers insalubres devenus inadaptés aux exigences du confort moderne. Sur ces besoins en logements, s’est greffée la volonté de fluidifier les centres urbains étroits en réalisant de larges et grandes avenues permettant la circulation automobile. La spécialisation accrue des activités et la division du travail imposent d’adapter le tissu urbain aux modes de production. Le zonage urbain, si caractéristique des politiques publiques d’aménagement urbain qui se développent pendant les trente glorieuses, organise des quartiers d’habitation, aux périphéries des cœurs de ville. S’y juxtaposent des zones commerciales à peu près dénuées d’espaces verts dignes de ce nom et des zones industrielles, concentrant les établissements de production responsables de catastrophes, en France, comme celle de Feyzin, au sud de Lyon, en1966, celle d’AZF en 2001 à Toulouse, celle enfin de Bhopal en Inde, en 1984, où les morts se montent en dizaines de milliers. Ce modèle de ville supporte mal le vieillissement et la crise des années qui vont succéder aux trente glorieuses. Les cités-dortoirs, construites dans l’urgence, présentent des difficultés en raison de la conception même de leur fonction urbaine, de leur éloignement et de leur mauvaise desserte en transport vis-à-vis des lieux d’emplois. Les multiples problèmes sociaux sont liés au chômage de masse et à la ségrégation sociale voire la ghettoïsation des populations mais ils sont aussi dus au mal-être émanant de l’absence d’espaces de promenade ou de détente, des nuisances liées au bruit et à la pollution. La conception architecturale, celle des barres et des tours, semble irremédiablement produire des dégradations, mais aussi une paupérisation. La grande transparence thermique des bâtiments entraîne des coûts et une précarité énergétique. Les villes, qui concentrent de plus en plus d’habitants, avec des conurbations constituant des tissus urbains denses, deviennent des milieux où émergent de véritables problèmes de pollution de l’air entrainant des pathologies urbaines. C’est aussi là que se concentrent la maladie du 21ème siècle, l’obésité, avec son lot de conséquences sur l’espérance de vie en raison des pathologies induites : les accidents cardiovasculaires, le diabète, les cancers, les cirrhoses. En raison de sa généralisation à toutes les villes du monde, cette maladie porte aussi le nom de « globésité ». La sédentarité résulte de l’incapacité à promouvoir des mobilités douces, de l’exercice physique en se cantonnant au final à des parcours dans des espaces bétonnés, entre les zones commerciales et les résidences délabrées. S’y ajoutent la congestion des moyens de transport et des risques : risques de pollution affectant la santé humaine, risques d’inondation, risque d’incendie ou d’accident technologique, risques de canicules, comme la canicule de 2003. La Conférence de Rio en 1992, notamment à travers les agendas 21, invite à repenser la conception de la ville. Remette la nature au cœur de la ville est aujourd’hui un objectif incontournable des politiques urbaines. Cela passe d’abord par la reconnaissance de l’existant, à savoir la présence en ville d’éléments de nature nombreux et diversifiés. Les travaux des écologues (Shwartz et al., 2014 ; Clergeau, 2007) soulignent aujourd’hui sa richesse et sa diversité. En témoigne l’abondance de
certaines populations animales emblématiques en milieu urbain tels les hérissons à Zürich, les renards à Londres, ou encore les faucons pèlerins à Séville. Cette biodiversité urbaine s’explique par l’originalité de l’écosystème urbain, appelé comme étant non-analogue marqué par la diversité des biotopes présents en ville (Simon et Raymond, 2015). Il s’agit aussi de favoriser les potentialités d’accueil comme la mise en œuvre de mobiliers urbains favorables à la nature, comme le sont, par exemple les gabions en ville (Fig. 3).

Figure 3 : les gabions en ville : l’exemple de Rennes – photos tirés du site web « le site de Rennes, Ville et Métropole »

Cette infrastructure simple, minérale, le gabion, conçu comme élément d’aménagement urbain (limitation de chaussée, protection contre des mouvements de terrain) ou comme élément de décoration, comme mobilier urbain constitue une infrastructure minérale, présentée comme élément de nature dans un contexte urbain. Dans la réalité, ces infrastructures deviennent souvent des habitats abritant une faune et une flore à caractère rupicole.

Cette nature en ville fait l’objet de politiques publiques volontaires, ayant une logique de préservation d’espèces emblématiques pour lesquelles les villes conçoivent des plans favorisant les continuums et en France cela s’intègre aux SRCE, Schémas Régionaux de Continuité Ecologique, institués par le Grenelle de l’environnement, renforcés par la Loi sur la biodiversité.

Toutefois, la nature en ville fait l’objet de forts développements depuis que les pouvoirs publics ont pris conscience qu’elle rend des services. En Europe notamment, la prise en compte d’un certain nombre d’urgences environnementales, comme les risques évoqués plus haut, mais aussi les problèmes de santé publique, de déstructurations des liens sociaux accompagnés de violences urbaines, a fait basculer les pouvoirs publics, à partir des dernières années du 20ème siècle et sur la base de la charte d’Aarlborg (1994), dans une conception de l’aménagement urbain multidimensionnel, celui de la ville durable (Jégou, 2011) où la nature est censée jouer des rôles positifs sur le climat urbain, sur la santé des citadins, sur l’atténuation de risques.

En résumé, la question de la nature en ville sous-tend donc plusieurs objets :
- Celui de l’effectivité de la présence de milieux de nature, notamment en raison de la présence de supports minéraux, sols, pavements, toitures, murs avec leurs anfractuosités, jouant le rôle d’accueil ou d’abri pour une certaine flore ou une certains faune,
- Celui de la présence d’espaces dédiés volontairement à ces milieux et aménagés à cet effet, en allant de plantations réduites sur certains boulevards à des parcs de plusieurs hectares,
- Celui de la reconquête spontanée d’espaces délaissés, de friches,
- Celui d’espaces volontairement créés pour favoriser des fonctions

2-1-2. Renaturation : spontanée ou contrôlée ?

La renaturation peut prendre deux formes, l’une spontanée et l’autre contrôlée (Pech, 2015). Le terme est utilisé actuellement en urbanisme, en architecture et en conservation de la nature. La renaturation est un processus de modification d’une portion de l’espace, bâtiment, îlot, quartier, parcelle, paysage, territoire, sous l’effet d’une extension de l’occupation par des éléments naturels, flore, faune, écoulement des eaux superficielles, activité morphodynamique etc. Cependant, cette mutation peut prendre deux formes. Soit, il s’agit d’une dynamique écologique spontanée à la suite d’une déprise et au détriment de portions de l’espace aménagées par des acteurs humains soit elle correspond à une forme volontaire d’aménagement de paysages plus ou moins fortement artificialisés, en milieu industriel et urbain mais aussi dans de nombreux espaces ruraux, comme d’anciens polders actuellement rendus à la mer.

Dans le premier cas, la renaturation correspond à une trajectoire mésologique et succède à une phase d’anthropisation ou d’artificialisation, comme les friches. Dans l’autre cas, le projet d’aménagement en particulier en milieu urbain vise à donner une assise à une participation de la nature comme élément de décor voire comme élément contributif du fonctionnement du système urbanisé, du bâtiment à la ville en passant par le quartier. Pour les espaces ruraux, il s’agit de répondre à la double tension qui résulte à la fois de la régression des espaces cultivés, surtout en Europe, et à la crise environnementale, se traduisant soit par la raréfaction des habitats soit par la montée des risques naturels comme le relèvement du niveau marin accompagné de risques de submersion. Dans ces deux derniers cas, la renaturation s’inscrit dans le processus des politiques publiques de protection de la nature.

Au cœur du processus de renaturation se pose la question de la nature et il existe une contradiction apparente du processus de renaturation. Dans un cas, il s’agit d’une évolution spontanée accompagnant un abandon, une déprise, une marginalisation d’espaces, de territoires, de paysages ou de milieux voire de bâtiments et d’infrastructures : le symbole en est positivement l’ensemble monumental d’Angkor et plus négativement, en termes de ressenti mais non de valeur écologique, les friches urbaines (Muratet et al., 2007). On parle dans certains cas de nature férale : il s’agit de la nature sauvage (traduction québécoise du terme wilderness) reconstituée après abandon d’aménagements ou d’occupations par des établissements humains. Dans l’autre cas, il s’agit au contraire d’une démarche totalement contrôlée, voulue dans une approche de l’aménagement qui choisit de placer de la nature dans des
milieux artificialisés y compris au cœur de la ville la plus dense : ce processus est largement en cours dans la plupart des grandes villes où il figure en bonne place dans les politiques d’aménagement au cœur de la ville durable.

Une étude de l’évolution des types de paysages en Europe, entre 1990 et 2006, grâce à la base de données CORINE LAND COVER (Hatna et Bakker, 2011), a permis de démontrer que l’abandon de terres arables en Europe n’a pas concerné des secteurs marginaux, faiblement peuplés, économiquement pauvres, mais des secteurs fortement soumis à des transformations, près des villes et des infrastructures de transport (Penone et al., 2012). En Europe, actuellement, la déprise rurale est terminée et les processus d’enrichissement sont les plus importants conjointement là où les activités et les densités sont les plus importantes : à proximité des villes s’intensifient les zones d’approvisionnement alimentaire des marchés urbains mais en même temps s’élaborent des friches ou des espaces renaturés.

Certains espaces urbains font partie des délaissés, des friches ou de secteurs peu aménagés (Figure 4).

Figure 4 : reconquête naturelle d’un cimetière de voitures par une flore spontanée

Ils favorisent une reconquête spontanée d’espèces végétales et permettent par voie de conséquence d’amorcer un accueil d’une faune variée. Paradoxalement s’y développent des milieux dont on sait qu’ils renferment une biodiversité importante (Muratet et al., 2007). Les ILTe constituent très fréquemment des espaces auprès desquels, peu ou prou se sont développés des friches abritant une flore et une faune pour lesquelles, même en contexte urbain, les travaux qui ont pu être menés
démontrent cette richesse en biodiversité (Katwinkell et al., 2009 ; Penone, 2012 ; Foster, 2014). Ce constat renforce donc l’hypothèse de départ du projet RENATU : il existe une certaine biodiversité le long des ILTe, au même titre que de nombreuses friches urbaines où se développe des milieux de nature spontanée.

A côté de cette renaturation spontanée, on connaît depuis plusieurs années des stratégies visant à recréer des milieux de nature dans des espaces fortement anthropisés et a fortiori dans les villes (Haaland et Van den Bosch, 2015). Un des cas les plus emblématiques constitue la renaturation d’un ancien cours d’eau dans la ville de Séoul en Corée du sud, là où les aménagements des périodes de la fin du 20ème siècle avaient au contraire fait disparaître la rivière pour faire passer des infrastructures routières (Fig. 5).

Figure 5 : la restauration du cours du ruisseau Cheong-Gye (Source : International Association for Urban Climate Newsletter, Issue n°11, June 2005 ; K.Nam-Choon, 2005. Ecological restoration and revegetation works in Korea, Landscape Ecology 1: 77-8)

Les politiques urbaines assument de développer des stratégies de renaturation des tissus urbains pour répondre à des enjeux des politiques publiques en matière de biodiversité. Ces enjeux s’inscrivent comme autant de réponses aux problèmes urbains. Si plus de 50% de la population mondiale est urbaine depuis 2007, la croissance des villes se matérialise par l’étallement et la densification des tissus urbains (Anas et Pines, 2008). Ceux-ci s’accompagnent de tensions sociodémographiques et socio-économiques, comme la précarité des habitats et celle de l’accès à certaines ressources comme l’eau potable ou l’électricité et le chauffage, mais aussi l’insuffisance et la congestion des modes de transports (Boulanger et Bréchet, 2005 ; McGranahan G. et al., 2005 ; Anderssen, 2006 ; Grimm et al., 2008 ; Sweeting et Winfield, 2012). La sous-adaptation et les impacts environnementaux des infrastructures et de la prolifération des axes de circulation responsables de près du tiers de la pollution des villes (McGranahan et al., 2005 ; François et al., 2017 ; Nanaki et al., 2017) affectent la vie des citadins, à la fois dans leur bien-être et dans leur santé (McGranahan G. et al., 2005 ; Byrne et al., 2008 ; Lawrence, 2008 ; Wells et Donofrio, 2011 ; Vienneau et al., 2015).
Au total, la renaturation envisagée dans le cadre du projet RENATU concerne la reconquête des tissus urbains artificialisés, sensu lato, par des milieux de nature. Ces processus de renaturation sont soit spontanés, comme dans le cas de nombreuses friches urbaines, sont volontaires parce qu’ils répondent à des stratégies et à des politiques publiques urbaines en faveur d’une place accordée à la nature dans l’espace urbain. Ces milieux de nature sont pour la plupart non dénués d’intérêts écologiques et parce qu’ils accueillent une certaine variété attestée d’espèces de flore et de faune, déployées en relations fonctionnelles, ils sont porteurs d’une biodiversité. La question traitée par le projet RENATU à l’issue de cette réflexion a consisté à :

- Explorer en quoi les acteurs politiques de la MGP, Métropole du Grand Paris, sont ouverts et intéressés à prendre en charge cette biodiversité au sein de ce nouveau territoire et à en faire un enjeu d’aménagement qui affecte les politiques publiques urbaines,
- Explorer les attentes et les modes de gestion développés par les opérateurs à propos de cette biodiversité liée aux ILTe
- Explorer en quoi se pose la question de la compensation et en quoi les ILTe peuvent jouer un rôle,
- Explorer les attentes des usagers,
- Se poser la question de la valeur écologique des emprises de ces ILT et d’en produire un mode d’évaluation facilement utilisable pour les opérateurs
Références

2-2. La MGP, Métropole du Grand Paris : quelles ambitions pour quelle biodiversité ?

ARTICLE PROPOSE DANS LA REVUE VERTIGO

POLITIQUES URBAINES ET BIODIVERSITE : UN FRONT ECOLOGIQUE ? LE CAS DE LA MGP, MÉTROPOLE DU GRAND PARIS

Rochard Hugo, géographe, université Paris 1 Panthéon-Sorbonne F-75005 Paris, hugo.rochard@gmail.com

About Cédissia, Mairie de Paris, Architecte, Chargée de Mission, Direction de l'Architecture et du Patrimoine, cedissia.dechastenet@paris.fr

Frascaria-Lacoste Nathalie, écologue, université Paris Sud, 15 rue Georges Clemenceau, F-91400 Orsay nathalie.frascaria@u-psud.fr

Jacob Philippe, écologue, Observatoire Parisien de la biodiversité, Square Capitan , F-75005 Paris, Philippe.Jacob@paris.fr

Simon Laurent, géographe, université Paris 1 Panthéon-Sorbonne F-75005 Paris, laurent.simon@univ-paris1.fr

Pierre Pech, géographe, université Paris 1 Panthéon-Sorbonne F-75005 Paris, pech@univ-paris1.fr
Résumé

Au sein de la plupart des grandes métropoles, les pouvoirs publics développent des stratégies en faveur de la biodiversité, en vue de renforcer les espaces de nature dans le tissu urbain ou de renaturer des espaces artificiels. La MGP, Métropole du Grand Paris, créée en 2016, rassemble la commune parisienne et plus de 130 autres communes dans un établissement territorial chargé de la planification urbaine. L’analyse des entretiens effectués auprès de 21 élus de la MGP permet de suggérer que la biodiversité constitue un levier favorable à l’épanouissement de ce Grand Paris sous la forme d’un double front écologique. La biodiversité fait l’objet d’une attention particulière du fait d’une reconnaissance partagée de ses services écosystémiques et les politiques publiques intègrent la biodiversité comme élément structurant dans les projets de rénovation urbaine au sein de la MGP. Les ILTe, Infrastructures de Transport Linéaire et leurs emprises semblent bien perçues comme des espaces potentiels pour cette renaturation.

Mots clés
Renaturation ; politiques écologiques urbaines ; front écologique ; acteurs politiques ; écologie politique

Abstract

Within most major metropolises, public authorities are developing strategies to promote biodiversity, with a view to strengthening natural spaces in the urban fabric or to renaturalizing artificial spaces. The PGM, Greater Paris Metropolis, created in 2016, brings together the Paris municipality and more than 130 other municipalities in a territorial establishment responsible for urban planning. The analysis of the interviews with 21 elected representatives of the PGM suggests that biodiversity is a leverage favorable to the flourishing of this Greater Paris in the form of a double ecological frontier. Biodiversity is the subject of special attention due to a shared recognition of its ecosystem services and public policies integrate biodiversity as a structuring element in urban renewal projects within the PGM. LTI, Linear Transport Infrastructures seem to be well perceived as potential spaces for this renaturation.

Key words
Renaturation ; ecological urban policies ; ecological frontier ; politics stake holders ; political ecology
INTRODUCTION

Depuis la fin des années 1990, de plus en plus concernés par la biodiversité, les pouvoirs publics affichent leur ambition de passer à une gestion plus écologique de leur patrimoine naturel, tels que les espaces verts, les parcs urbains, les pieds d’arbres etc., avec notamment l’abandon d’intrants chimiques et avec la promotion d’aménagements favorables à la biodiversité (Blanc, 1998 ; Hucy, 2002 ; McKinney, 2002 ; Clergeau, 2007 ; Arrif et al., 2011 ; Jégou, 2011 ; Gey, 2013 ; Gey, 2015). Toutefois, assez précocement, les politiques publiques ont visé aussi à renaturer le tissu urbain, en libérant des espaces artificiels, friches entre autres, au profit de l’établissement de milieux de nature (Muratet et al., 2007 ; Penone, 2012 ; Vergnes et al., 2013 ; Bourdeau-Lepage et Vidal, 2014 ; Foster, 2014 ; Shwartz et al., 2014 ; Connop et al., 2016 ; Garcia-Garcia et al., 2016). L’objectif s’est inscrit à la fois dans une attention renouvelée en faveur de la place de la nature en ville mais aussi parce que celle-ci contribue à rendre des services écosystémiques. Au premier rang, a figuré la contribution à l’atténuation du réchauffement climatique et des impacts de l’environnement urbain, les canicules, les ruissellements urbains par temps d’orage et tout simplement la pollution atmosphérique urbaine (Boulanger et Brechet, 2005 ; Mc Granahan et al., 2005 ; Grimm et al., 2008 ; Lawrence, 2008 ; Loughner et al., 2012 ; De Vries et al., 2013 ; Haaland et Van den Bosch, 2015). Dans un cas comme dans l’autre, a priori, une telle stratégie des politiques publiques urbaines ne peut échapper à une interrogation sur les continuités écologiques et leur fragmentation ou sur les impacts réciproques entre tissu urbain dense et espaces de nature environnants (Blanc et Clergeau, 2010 ; La Greca et al., 2011 ; Ahern, 2012 ; Vergnes et al., 2013 ; Depietri et al., 2016). Seitzinger et al. (2012) ont bien montré les interrelations qui existent ne serait-ce que pour assurer certaines fonctions métaboliques des villes, allant de l’évacuation des eaux usagées aux besoins de fonctions récréatives représentées par les espaces de nature pour la population urbaine.

New York, Londres ou Berlin disposent d’une structuration administrative qui leur a permis d’entreprendre des stratégies écologiques sur un territoire vaste, donnant corps à de vraies logiques de renaturation et des connexions entre le tissu le plus urbanisé et les milieux de nature environnant (Major of London, 2008 ; Lovasi et al., 2013 ; Douglas, 2014 ; Connop et al., 2016). En revanche, en 2017, Paris se distingue par un territoire communal défini en 1860, alors que la population parisienne ainsi que son tissu urbain débordent largement dans ses banlieues. La commune de Paris représente, par exemple, 1/5 de la population de la Région Île-de-France, mais seulement 0,9 % de sa superficie (105,4 km² sur 12 000 km²). Et encore, la Région est à 75% rurale (Brédif et Pupin, 2012) et les 10,2 millions d’urbains sont concentrés sur 25% de l’espace francilien, avec une vraie structuration centre-périphérie de la densité urbaine, sans discontinuité, comme c’est le cas pour les trois autres grandes métropoles citées plus haut. Pourtant, des continuités écologiques semblent évidentes, jusques et y compris dans le tissu urbain le plus dense au point d’avoir suscité des recherches scientifiques (Muratet et al., 2007 ; Machon, 2012 ; Penone, 2012 ; Vergnes et al., 2013 ; Foster, 2014). Des
documents de planification communaux ou départementaux, comme le Plan Biodiversité de Paris ou celui du Département de Seine-Saint-Denis, concernent la biodiversité et s’intégrent au moins comme documents d’orientation dans les documents d’urbanisme. En revanche, la conception d’une stratégie écologique commune, celle visant à renaturer de l’espace urbain ou à protéger des espaces de nature à l’échelle de la MGP est actuellement de l’ordre de l’utopie. Et le SRCE, Schéma Régional de Cohérence Ecologique, document de planification élaboré à l’échelle régionale n’a de valeur qu’indicative : il n’est pas opposable et n’a que peu d’impact sur l’aménagement urbain.

De nombreux chercheurs se sont posés la question du rôle que peuvent avoir les composantes du développement durable dans l’évolution du fonctionnement institutionnel et effectif des territoires en se demandant en quoi elles peuvent orienter la construction territoriale et les politiques publiques urbaines (Jégou, 2011 ; Mallet et Zanetti, 2015). Nous proposons de questionner de manière originale le concept de front écologique (Hagerman, 2007 ; Guyot et Richard, 2009 ; Safransky, 2014) que nous interprétons comme étant la progression des espaces de nature au sein du tissu urbain et le développement de politiques publiques qui portent cette progression. Si pour Safransky (2014) cela s’accompagne d’une gentrification, la question est de savoir, pour la MGP, de quel type de front écologique il s’agit, s’il se traduit par une renaturation ponctuelle d’espaces délaissés ou de friches (Safransky, 2014) ou s’il s’agit d’une réelle stratégie, répondant à des logiques favorisant la biodiversité y compris dans ses composantes sociales avec la prise en compte des services écosystémiques.

Méthode : l’analyse du discours des élus de la MGP

La question traitée s’intègre à la problématique de deux projets. ECOVILLE, en réponse à un appel à projets de l’Agence Nationale Française de la Recherche, vise à comprendre, entre autres, quels rôles jouent les acteurs y compris institutionnels en faveur de la revégétalisation des éléments de l’urbanisme parisien au sens large. RENATU, qui répond à l’appel d’offre du programme ITTECOP, a pour ambition de comprendre en quoi les ILTe, Infrastructures Linéaires de Transport et leurs emprises, peuvent jouer un rôle favorable à la renaturation dans le cadre de la MGP. Si des études écologiques sur les effets de la renaturation sont nécessaires dans la logique de ces projets (Clévenot et al., 2017), il est tout aussi intéressant de s’interroger sur la manière dont ces questions de renaturation peuvent, en sens inverse, avoir un rôle dans la construction de la gouvernance de la MGP. La MGP est un établissement de coopération intercommunal créé depuis janvier 2016 et qui assume notamment la stratégie d’aménagement urbain, en y intégrant les questions environnementales. Il s’agit de questionner les formes d’engagement en faveur de la biodiversité de la part des élus (Douglas, 2014). Pour répondre à cette question, après avoir pris la mesure des composantes un peu spécifiques de cette métropole, nous présentons les résultats de l’analyse de 21 entretiens élaborés auprès d’acteurs de la
MGP, dans un contexte de mise en place de cette nouvelle entité, entre les mois d’avril et de juin au cours de l’année 2016.

L’analyse du discours est une pratique scientifique, notamment développée en anthropologie, en sociologie ou en géographie, visant à ne pas négliger d’autres dimensions que les structures économiques et sociales, celles habituellement envisagées dans les analyses comme déterminants, les productions, les prix, les salaires, les niveaux de vie, les niveaux de formation etc. En effet, des choix d’orientations d’aménagements ou certains blocages peuvent relever de déterminants autres que les structures économiques et sociales habituelles et facilement objectivables. L’analyse du discours permet d’identifier les relations entre acteurs, leurs réticences ou leurs capacités d’engagements vis-à-vis d’enjeux. Le discours des élus est un exercice de communication oscillant souvent entre savoir et pouvoir, entre posture personnelle et posture impliquée dans un réseau politique. Intervient aussi la question de l’échelle du territoire concerné. De nombreux auteurs ont appliqué des méthodes d’analyse des discours à propos des politiques publiques environnementales (Hajer, 1997 ; Sharp et Richardson, 2001). Par conséquent, il nous a paru intéressant d’identifier, à travers le discours d’élus de la MGP, quels sont les processus potentiels de gouvernance en relation avec la biodiversité. Si de nombreux travaux s’appuient sur des discours ou des textes d’articles de presse émanant ou résultant de la réflexion d’acteurs politiques, notre intention a été de prendre contact avec des acteurs, récemment installés dans leur fonction d’élus de la MGP en 2016. Notre objectif a consisté à savoir si les élus de la MGP mobilisent des discours relatifs aux représentations de la ville et ses problématiques environnementales, notamment la biodiversité. Il s’agit de voir comment les acteurs politiques s’approprient ces problématiques pour fonder leur pensée propre, ou comment ils s’associent à d’autres acteurs, pour établir leurs stratégies dans une éventuelle volonté d’intégration ou de confédération entre les échelles de gouvernance d’un bien écologique commun qui dépasse la diversité des situations locales.

A partir d’une grille élaborée à partir d’une analyse des enjeux et de la littérature (Brédif et Pupin, 2012 ; Brédif et al., 2016 ; Pech et al., 2016) (Tab. 1), des entretiens, de 1 à 2 heures, ont été conduits auprès d’un panel d’acteurs. Nous avons cherché à connaître les perceptions du personnel politique de cette nouvelle échelle d’action que constitue la MGP et de ses missions relatives aux enjeux territoriaux de la biodiversité. La sélection d’un panel de 21 élus a ainsi obéi à deux priorités : l’appartenance au système d’acteurs politiques de la MGP et l’exercice d’une délégation en lien avec les questions environnementales.

Chaque entretien était fondé sur une trame unique divisée en trois axes successifs adaptés des registres de la grille élaborée par Ollagnon (1999) : un état des lieux du territoire du Grand Paris, de ses acteurs et l’état de qualité de ses espaces de nature, suivi d’un diagnostic des actions engagées à travers les plans d’aménagement à plusieurs échelles sur le territoire et enfin la formulation de prospectives d’actions et de grandes propositions stratégiques pour la MGP. La forme de ces entretiens avait également comme constante de disposer d’une carte du territoire institutionnel de la MGP afin de
favoriser les références territoriales dans le discours des élus et de leur donner la possibilité d’avoir une vue d’ensemble du découpage administratif. Ces entretiens avec les élus ont été précédés de rencontres avec huit acteurs techniques et experts d’établissements concernés, à la Mairie de Paris, au Département de Seine-Saint-Denis, à l’EPCI de Plaine Commune et à Natureparif. Ces échanges préliminaires nous ont permis de comprendre les problématiques locales et nous ont aussi confirmé le rôle central des élus dans la mise en place d’actions environnementales. Ceux-ci ont potentiellement un rôle de relai des propositions des techniciens et experts des services concernés tout comme un pouvoir initiateur dans l’orientation du travail de ces techniciens.

21 élus ont accepté de participer à l’enquête. Leurs paroles enregistrées et intégralement retranscrites ont ensuite fait l’objet d’une étude lexicologique, avec le logiciel TROPES, par un ensemble d’analyses thématiques ciblées et une production statistique de récurrences des principaux concepts et de leurs liens de proximité. Les thématiques concernant les priorités données par les élus ont été identifiées et classées à l’aide d’un tableur Excel qui a permis de donner une valeur entre 1 et -1 pour les hiérarchies accordées dans les discours afin d’être traitées statistiquement selon des axes préférentiels.
Tableau 1 : grille d’entretien auprès des élus de la Métropole du Grand Paris

<table>
<thead>
<tr>
<th>Introduction, présentation de l’acteur</th>
<th>1. Pouvez-vous brièvement expliquer ce qui vous a conduit à vous engager sur les questions d'environnement dans votre circonscription ? (Présentation de la carte du découpage territorial de la Métropole du Grand Paris, support conducteur de l'entretien)</th>
</tr>
</thead>
</table>
- en tant que territoire ?
- en tant qu’EPCI ?
3. Quels sont les éléments du patrimoine naturel (bois, parcs…) dans ce tissu urbain ? Existe-t-il aussi une homogénéité qui structure les espaces naturels de ce territoire ou une fragmentation de ces espaces ?
5. Qu’évoque pour vous les termes de « biodiversité ordinaire » en ville ?
Quels sont les espaces les plus propices à accueillir des formes de nature en ville selon vous ?
6. Percevez-vous une demande d’accès à la nature à l’échelle des territoires de la métropole ? Quels acteurs expriment cette demande ? Par quels moyens en avez-vous eu connaissance ?
7. Aujourd’hui, la biodiversité vous paraît-elle menacée à l’échelle du Grand Paris ?

| Diagnostic des actions engagées : les formes de nature à l’échelle du Grand Paris dans les plans d’aménagement : | 8. Quels seraient les compétences environnementales de la MGP ?
Dans le but de gérer ou de développer la biodiversité, la structure même du Grand Paris ne permettrait-elle pas de dépasser les limites administratives et les stratégies de chaque groupe d’acteurs (municipalités, intercommunalités, Mairie de Paris, Région Île-de-France) ?
9. A votre avis, quels peuvent être les outils institutionnels permettant des opérations de renaturation des territoires du Grand Paris ?
10. En milieu métropolitain, la conservation de la biodiversité s’apparente-t-elle, selon vous, à un laissez-faire ou à un interventionnisme plus important ou plus efficace ?
11. A votre avis les infrastructures de transport jouent-elles un rôle positif ou négatif sur la biodiversité ?
12. La métropole sera-t-elle dotée de compétences qui permettraient de concilier les différents plans en faveur des continuités écologiques comme celles inscrites dans le Schéma Régional de Cohérence Écologique de l’Île-de-France ?
13. La structure institutionnelle du Grand Paris pourrait-elle uniformiser des règles d’urbanisme déjà existantes qui intègrent des normes en termes de biodiversité (ex : coefficient de biotope) ?
14. Concernant les plans de protection de la biodiversité comme le Plan Biodiversité de Paris : les moyens institutionnels sont-ils en adéquation avec leurs objectifs ?
15. Pour vous, quel(s) interlocuteur(s) représente(nt) un élément de blocage ?
- Au sein de votre institution
- A l’extérieur
A l’inverse, quels sont, à votre avis les interlocuteurs partenaires de votre démarche ?
-Au sein de votre institution
- A l’extérieur |
Prospectives d’action et propositions stratégiques

17. Les acteurs privés sont cités dans le SRCE ou dans le plan biodiversité de Paris ? Comment coordonner leurs actions avec celles des acteurs publics ?
18. D’après la mission de Préfiguration, l’EPCI doit établir un plan métropolitain de l’environnement, de l’énergie, du climat (ou plan climat-énergie territorial (PCET) à compter de janvier 2016), quelle place pourrait y occuper la biodiversité ? La renaturation du tissu urbain parisien peut-elle être valorisée seulement par le truchement d’une politique de lutte contre le réchauffement climatique ?
19. Quelles actions favorables à la biodiversité pourrait-on envisager autour des infrastructures du Grand Paris Express et du prolongement des lignes de métro/RER ?
20. À votre niveau, pensez-vous pouvoir influencer des orientations stratégiques sur cette question ?
21. Avez-vous connaissance de ce qui est fait ailleurs en France et à l’étranger en matière de renaturation en milieu urbain ?

La métropole du Grand Paris

La concrétisation de la MGP dévoile les défis à relever en matière d’aménagement urbain mais aussi d’environnement pour rivaliser avec les autres métropoles de rang mondial comme Londres, Berlin, New York ou Tokyo. En France, depuis les lois de décentralisation des années 1980 les collectivités territoriales ont assisté à un renforcement de leur autonomie, récemment accru avec les lois MAPTAM, Modernisation de l’Action Publique Territoriale et d’Affirmation des Métropoles, et NOTRe, Nouvelle Organisation Territoriale de la République. En effet, le terme de métropole ne désigne plus seulement un ensemble urbain fonctionnel exerçant des fonctions de commandement, d’organisation et d’impulsion sur une région ; il a maintenant une signification institutionnelle puisqu’il fait référence à un nouveau genre d’intercommunalité aux compétences théoriquement augmentées, concernant des agglomérations qui dépassent 400 000 habitants. Le 1er janvier 2016, la structure de gouvernance du territoire du Grand Paris a pris ses fonctions avec l’objectif de réduire la fragmentation politique de l’agglomération parisienne dans le cadre d’une échelle d’action élargie, regroupant 131 communes rassemblées en douze entités intercommunales nommées Etablissement Publics Territoriaux, les EPT qui ceinturent la commune de Paris, constituant l’un de ces EPT, et comprennent au moins 300 000 habitants (Fig.1).
Figure 1 : carte de la Métropole du Grand Paris

Légende

Les espaces naturels

1. Les espaces d'enseignement : des surfaces définies

1.1. Les espaces protégés

- Parcs Nationaux régionaux
- Zones naturelles d'intérêt écologique, faunistique et floristique

1.2. Les parcs du réseau Ecologique et de Connaissance Géologique (REDICG) d'Île-de-France de 2013

2. Les objectifs du SECE : des continuums à mieux définir à l'échelle métropolitaine ?

2.1. Les grandes contraintes écologiques identifiées dans le SECE d'Île de France de 2012

- Le réseau hydrographique : les éléments d'une trame bleue
- Cours d'eau souterrains "susceptibles de faire l'objet d'opérations de réouverture"
- Cours d'eau souterrains "à préserver et/ou à restaurer"
- Autres cours d'eau permanents "à préserver et/ou à restaurer"
- Autres cours d'eau intermittents "à préserver et/ou à restaurer"
- Compartiments dites "multifonctionnels"

Les espaces littoraux et côtières : les éléments d'une trame verte

- "Compartiments de la sous-trame artificielle à préserver"
- "Compartiments de la sous-trame artificielle à restaurer"
- "Autres secteurs reconnus pour leur intérêt écologique en milieu urbain"
- "Autres secteurs reconnus pour leur intérêt écologique en contexte urbain"

2.2. Les infrastructures linéaires : des éléments fragilisés?

- Infrastructures ferroviaires régionales
- Infrastructures routières régionales

Des "obstacles de la sous-trame blanche"

- Obstacles sur les cours d'eau
- Des "points de fragilité des continuités de la trame blanche"

- Milieux humides alluviaux occupés par des infrastructures de transport
- Secteurs riches en rares et nouvelles occupés par des infrastructures de transport
- Des "obstacles et points de fragilité de la sous-trame artificielle"

- Principaux obstacles
- Points de fragilité des compartiments artificiels
La composition politique du conseil métropolitain comme la répartition des compétences montrent que l’échelon communal reste le niveau d’action de référence.

La MGP concentre 58 % de la population francilienne soit 6 968 051 habitants\(^1\). La densité de l’ensemble des 131 communes atteint près de 8 600 habitants par km\(^2\) sur un territoire de plus de 800 km\(^2\) et représente neuf fois la densité de l’Île-de-France. Celle-ci décroît globalement selon un gradient centre-périphérie dont la commune de Paris constitue l’espace le plus densément peuplé (21 153,9 habitants par km\(^3\)). Des écarts de densité sont aussi notables entre territoires extra-parisiens comme entre le Territoire d’Est Ensemble (T8) qui compte 10 305,5 habitants au kilomètre carré et Plaine Centrale (T11) qui en dénombre 7 000. De plus, l’hyperdensité concerne aussi les infrastructures linéaires de transport puisque en additionnant les longueurs cumulées des réseaux routiers et autoroutier\(^4\), ferroviaires\(^5\) et des réseaux urbains de surface de Paris\(^6\) et des trois départements auxquels sont rattachés les communes du territoire métropolitain (Hauts-de-Seine, Seine-Saint-Denis et Val-de-Marne), on obtient un total de 13 500 kilomètres, soit près de 30% de l’étendue de ces infrastructures à l’échelle de la Région Île-de-France\(^7\). Cette densité forte mais inégale constitue aussi un nouvel enjeu d’organisation des dynamiques économiques pour les pouvoirs publics qui axent leurs investissements sur un projet d’extension des transports publics, le Grand Paris Express. Cette forte densité n’est pas non plus sans conséquence sur la qualité de l’environnement du territoire. La densité de population et l’artificialisation des sols comme la densité des infrastructures de transport fragmentent les habitats naturels. Cependant, de récents travaux ont mis en en lumière que du fait de l’importance de l’occupation au sol des dépendances vertes des infrastructures linéaires de transports, celles-ci ont un fort potentiel à rendre de nombreux services écosystémiques à la société (Labarraque, 2016 ; Clevenot et al., 2017).

La promotion des modèles urbains fondés sur l’exemplarité environnementale témoigne du jeu d’influences métropolitaines à l’échelle internationale (Krueger et Savage, 2007 ; Girault, 2016). Aujourd’hui, la quasi-totalité des indicateurs de la qualité de vie en ville inclue des critères de présence d’espaces naturels ou semi-naturels. L’Organisation Mondiale de la Santé, tout comme le Schéma d’aménagement de la Région Île de France (SDRIF) préconisent ainsi un niveau minimum de 10 m\(^2\) d’espaces verts de proximité par habitant. Des études internationales soulignent les lacunes de la capitale française sur son niveau de qualité environnementale. En 2011, Paris figure au 3e rang (après Tokyo et Londres) du classement réalisé par l’Institut des stratégies urbaines de la Mori Memorial

\(^1\) Sources : Insee, recensement de Population - 2013
\(^2\) Sources : APUR, Note n°97 - janvier 2016
\(^3\) Sources : Insee, RP2008 et RP2013 exploitations principales
\(^4\) Sources : Sesp - service d’études techniques des routes et autoroutes (SETRA) et Direction générale des collectivités locales (DGCL) - 1er janvier 2007.
\(^5\) Sources : SNCF, Direction Contrôle de gestion grandes lignes - 1er janvier 2007.
\(^6\) Sources : statistiques annuelles (RATP) - 31 décembre 2008.
\(^7\) Le territoire de la Métropole du Grand Paris représente 814,24 km\(^2\), soit 7% de la superficie du territoire francilien.
Foundation (Tokyo), lequel se fonde sur un indice composite qui regroupe six critères (l’économie, la recherche et le développement, la qualité de la vie, l’écologie et l’environnement naturel, la culture et l’accessibilité). Bien que ce classement paraisse honorable pour la capitale française, en ne prenant en compte que la variable environnementale de ce classement, Paris n’arrive qu’en 15ème position, derrière, entre autres, Madrid, Berlin, Sidney ou Sao Paulo. De même, un autre classement, celui de l’enquête Mercer, confirme le faible niveau de qualité de vie de Paris : l’enquête classe en 2015 l’agglomération parisienne 27ème devant Londres (40ème) et Tokyo (44ème) mais derrière Munich (4ème), Vancouver (5ème) et Sydney (10ème).

En réponse à ce diagnostic défavorable à son image internationale, le pilier de la politique environnementale de la MGP repose notamment sur l’élaboration du Plan Climat-Air-Énergie et du schéma directeur des réseaux de distribution d’énergie métropolitains. Les EPT pourront, si leurs communes membres le souhaitent, continuer à assurer la mutualisation des autres compétences environnementales non métropolitaines. La carte des intercommunalités constituées avant la mise en place de la Métropole au début de l’année 2015 (figure 1) montre la volonté de mise en commun des compétences environnementales d’un grand nombre de communes comme celles, entre autres, des EPT d’Est Ensemble, Plaine Commune, Grand Paris Seine Ouest ou Val de Bièvre. Une gestion territoriale mutualisée de la nature urbaine s’est donc déjà mise en place mais de manière inégale sur le territoire de la MGP parce qu’un nombre non négligeable de communes, comme dans le T11, Grand Paris Sud-Est Avenir, ont une faible culture de l’intercommunalité. On remarque d’ailleurs que la définition de l’identité territoriale de chaque EPT s’appuie sur des références aux conditions d’habitats écologiques (plaine, vallée etc.).

Résultats

Le traitement par le logiciel TROPES de la totalité des discours des acteurs interrogés démontre que les principales occurrences concernent d’abord des termes du registre du champ sociopolitique (3561), comme « ville » (706). En revanche les termes du registre environnemental incluant ceux de la nature ne concernent que 1070 occurrences arrivant même après ceux du champ de l’aménagement et de l’urbanisme (1727). Pourtant, l’ensemble des élus interrogés reconnaît la transversalité des enjeux de biodiversité. Pour 37% des personnes interrogées, la biodiversité est aussi un thème potentiellement porteur de collaborations politiques. Selon les acteurs, même après une phase de militantisme que certains soulignent, les enjeux environnementaux dépassent aujourd’hui les frontières des partis politiques. Le jeu politique partisan ne semble pas influencer les choix stratégiques en faveur de la biodiversité même si les élus écologistes (4 sur 21) se considèrent précurseurs sur les questions d’écologie urbaine. D’après un élu, la diversité politique est même un atout pour mener des réflexions sur des projets qui fédèrent les intérêts des acteurs. Comme l’exprime un élu du T7, Paris Terres d’Envol : « Je suis convaincu que sur ces questions écologiques, d’aménagement urbain, de
préserver la biodiversité, on n’est pas sur des dogmes politiques inscrits par des partis mais sur des pratiques d’élus locaux sur leurs propres territoires.

Tous les entretiens avec les élus du grand Paris intégraient une question sur la manière dont ils considèrent la biodiversité. Si les définitions sont diverses, elles s’appuient sur différentes logiques territoriales (Simon, 2006). La logique de la biodiversité se rattaché soit à des échelles locales soit à des échelles spatiales plus vastes, la France, la Région Île-de-France voire le Bassin parisien mais peu à l’échelle de la MGP. Si 13 élus sur 21 font référence à des territoires extérieurs à ceux dont ils sont en charge, la commune ou les intercommunalités, peu ont une vision des enjeux environnementaux à l’échelle de la MGP. C’est un référentiel local, d’espaces situés à proximité où les acteurs sont engagés politiquement qui l’emporte.

Pourtant, les élus interrogés éprouvent chacun un certain degré de considération, même s’il n’est souvent pas prioritaire par rapport aux autres enjeux publics, pour les questions de biodiversité urbaine. On voit pourtant que si l’ensemble du panel des élus est sensible à la nécessité de valoriser la biodiversité en ville, ils ne l’expriment pas avec la même intensité. En effet, le contenu donné au terme même de biodiversité connait des variations selon chaque acteur. Pour une majorité, il est immédiatement associé aux questions climatiques : le substantif « climat » est cité en moyenne à 9 reprises par chaque élu. La référence évoquée unanément est celle de la COP 21 qui s’est tenue à Paris au mois de décembre 2015. Ce leitmotiv dans le discours des élus illustre l’impact territorial de cet événement dans la construction d’un discours public sur l’environnement qui accorde une grande place à l’atténuation du changement climatique. Cette insistance sur les enjeux climatiques peut être interprétée comme une utilisation de la médiatisation du changement climatique mais dissimule aussi sans doute certaines lacunes concernant la connaissance des enjeux spécifiques à la biodiversité en ville.

L’étude des références temporelles dans les discours des élus permet de connaître la capacité à projeter une action et à donner une échéance aux politiques environnementales. Peu d’élus ont la capacité à projeter la situation du territoire métropolitain dans l’avenir. Une majorité des élus ont un discours proche de celui du présentisme (Hartog, 2003) en évoquant principalement des problèmes de gestion quotidienne des milieux naturels en ville. Comme le dit une élue du T4 : « … on sait qu’il faut qu’on produise du logement ». Ou bien on constate la nécessité d’adapter les initiatives environnementales aux moyens : « Il n’y a plus d’argent dans les caisses donc il faut ménager les idées, c’est ce que je m’efforce de faire dans ma délégation parce que je n’ai quasiment pas de budget. »

S’ils valorisent l’intercommunalité, les élus adoptent un discours davantage ancré sur le territoire d’action hérité de leur mandature que celui de la MGP. L’importance des références spatiales dans les discours, qui sont des références locales pose la question d’un certain localisme qui fait abstraction des autres territoires de la Métropole parisienne. Par exemple, un élu affirme : « Pour moi, la métropole doit être une administration de mission. Je n’ai pas besoin de faire une grosse administration, qu’on
ait les compétences stratégiques et pas l’opérationnalité, l’opérationnalité doit être dans les territoires locaux. La métropole doit faire faire plutôt que faire directement. »

La question de la fonction des espaces verts et de l’intégration des services écosystémiques rendus par ceux-ci permet de préciser les rationalités des discours des élus. Cette approche des éléments naturels en ville n’est pas sans rappeler celle des théories de l’urbanisme hygiéniste de l’espace vert en ville. La végétalisation est alors un instrument technique pour répondre aux problèmes générés par la congestion urbaine. Il répond dans le même temps à un projet social qui vise à réguler les tensions urbaines et proposer des espaces de détente par un système hiérarchisé d’espaces verts allant, à Paris, du square de quartier aux bois urbains. Le végétal, principal élément naturel mis en avant, se double bien souvent d’une fonction esthétique en ville, pour 9 élus sur 21. Ceux-ci privilégient les termes de « bien-être » ou de « cadre de vie » pour caractériser la fonction des espaces verts. Quant aux questions visant à identifier les grandes qualités du patrimoine naturel du territoire du Grand Paris, la métaphore du « poumon vert » est employée par la moitié des acteurs. Réminiscence d’anciennes conceptions urbanistiques, elle renvoie à la fonction sanitaire dévolue aux espaces de nature en ville et plus implicitement pour leur capacité d’interception des polluants atmosphériques. La nature est perçue dans ce système comme un élément positif du milieu urbain et les remarques sur ses aspects négatifs ne sont que marginales. Lorsque l’on aborde la multifonctionnalité des espaces verts en ville et des services rendus aux habitants et usagers, les discours associent de façon univoque le niveau de biodiversité à la plus grande inscription des espaces verts dans les projets urbains et à l’importance de leur fréquentation.

Cette « stratégie végétale » est bien présente dans le discours des élus même si elle se mêle à celle d’une augmentation des surfaces et des processus naturels dans un but principal de prévention des risques liés aux îlots de chaleur urbains. Certains EPT ont élaboré des politiques novatrices sur la question de nature en ville et de préservation de la biodiversité pour de nombreux services écosystémiques qu’elle rend : Plaine Commune, Est Ensemble (territoires de Seine-Saint-Denis) pionniers en matière d’écologie urbaine et Grand Paris Seine Ouest (GPSO), première communauté d’agglomération de France labellisée par le ministère de l’écologie pour sa stratégie globale de préservation de la nature et de la biodiversité. Cependant, les acteurs ne mettent en avant que certains services rendus. Ce sont les services culturels, tels qu’ils ont été définis par le Millenium Ecosystem Assessment (MEA, 2003) comme les bénéfices éducatifs, l’agrément ou la valeur d’héritage que constituent les écosystèmes urbains qui occupent une place prépondérante dans les discours des élus. Les services de régulation sont également récurrents et l’accent est mis sur les régulations des cycles climatiques et hydriques. A l’inverse donc, les services d’autorégulation sont moins évoqués par les acteurs bien que la constitution des sols en milieu urbain qui représente un enjeu en milieu urbain pour 12 acteurs interrogés sur 21. Enfin, les services de prélèvement sont évoqués plus marginalement lorsque les personnes interrogées mettent en avant l’engouement pour l’agriculture urbaine. De par cette confusion entre bien-être humain et renaturation des espaces urbains, le terme de trames vertes se
confond régulièrement avec celui de « coulée verte ». Le système de coulée verte renvoie à des usages spécifiques de ces corridors et notamment de mobilités douces avec la construction de pistes cyclables. Comme le dit un élu : « C’est plutôt le concept coulée verte qu’on pourrait inciter à faire. Moi qu’il y ait du bâti, un peu de macadam entre les espaces verts, ne me pose pas en soi un problème. [...] Alors dans certains cas je veux bien qu’il y ait des endroits où on fasse la démonstration, montrer que le crapaud calamite il faut qu’il puisse passer d’un endroit à un autre. Mais c’est quand même pas général, sinon on s’en va tous et on laisse les animaux ». Et pour un autre du T4, Grand Paris Ouest la Défense : « Nous sur notre coulée verte et notre Parc Naturel Urbain : on a un secteur très riche en biodiversité et que l’on cultive de façon à garder cette biodiversité et à l’entretenir. On a redécouvert en mettant en friche des orchidées sauvages, des animaux. On a fait des itinéraires de promenade en laissant des endroits complètement inaccessibles à la population exprès parce que ce sont des endroits où on a vu notre richesse de biodiversité ».

Mais les élus ont peu de connaissance sur la richesse du patrimoine naturel à l’échelle de la Métropole, tout comme sur la présence d’espaces protégés, comme les zones Natura 2000 du nord-est de la MGP. Seuls les connaissent les acteurs des territoires de Plaine Commune (T6), Est Ensemble (T8) et Paris Terre d’Envol (T7) qui sont d’ailleurs des intercommunalités constituées antérieurement à la mise en place de la MGP.

Les services rendus par les écosystèmes urbains sont presque toujours perçus positivement par les élus. La densification des espaces bâtis permettrait de freiner l’artificialisation des sols pour une majorité d’élus. Un élu estime : « Je pense qu’on peut densifier plus la ville en préservant plus de sols naturels ». Le plan de relance de construction de logements serait également vecteur d’une végétalisation. Notons seulement que les normes d’urbanisme varient d’une commune à l’autre : la mise en place des Plans Locaux d’Urbanisme pourrait permettre d’imposer un niveau de végétalisation et de pleine terre des nouvelles constructions relatif à chaque configuration territoriale par l’intermédiaire d’un coefficient de biotope différentiel (qui existe déjà dans certaines communes comme Paris ou Montreuil). Cette territorialisation des normes d’urbanisme permettrait peut-être de concilier les discours divergents que nous avons relevés.

Afin de valoriser des politiques écologiques, les élus interrogés élaborent des stratégies fondées sur des arguments économiques. D’abord les références aux enjeux économiques de la valorisation de la biodiversité en ville sont très présentes. Les notions de « coût » voire de « surcoût » sont récurrentes. Les élus adoptent deux discours distincts sur cette idée. D’une part, ceux qui mettent en avant que l’écologie est source d’économie pour les collectivités et un nouveau pourvoyeur d’emplois pour mieux légitimer des politiques en faveur de la nature en ville. De l’autre, ceux qui soulignent que ces
politiques ont un coût notamment en matière d’aménagement public. Cette dichotomie souligne différents niveaux de légitimation des politiques d’écologie en ville qui sont souvent jugées secondaires par rapport aux questions économiques. Les discours entrent alors en dissonance.

Le discours des élus privilégie la présence végétale en ville au détriment de celle des animaux. Le nombre de références aux espèces végétales est en moyenne deux fois supérieur à celui des espèces animales. Certaines espèces sont récurrentes dans les discours et semblent emblématiques pour les élus comme l’abeille.

Même s’ils n’ont pas le même discours de justification, les élus sont tous sensibles à la nécessité de valoriser la nature en ville et pourtant, aucun plan stratégique dédié aux questions de biodiversité en ville n’est inscrit dans les missions de la MGP. Cette absence de programme commun a plusieurs raisons. De nombreux élus métropolitains expliquent que leurs capacités de réalisation des projets sont dépendantes des différents intérêts des acteurs impliqués dans la conduite de projets de renaturation mais externes au cercle des décideurs politiques. Lorsque ces intérêts sont incompatibles, ils constituent des blocages à l’action politique et inhibe la mise en œuvre de certains projets. Les élus interrogés se disent confrontés dans leur action quotidienne à un système complexe d’acteurs en lien avec les questions d’aménagement et de politique publique (Brullot et al., 2014). L’importance de ces intérêts contradictoires montre que certains conflits de rationalités entre acteurs sont des éléments de contraintes (financières, organisationnelles, temporelles) voire de blocages dans la conduite des politiques en faveur de la nature en ville (Fig. 2).
On note par exemple que les associations sont un élément de structuration politique et des partenaires pour les élus ayant à la fois légitimité et intérêts dans la construction d’une politique environnementale. Un autre exemple cité par les élus renvoie au coût d’adaptabilité de la main d’œuvre aussi bien en termes financiers que politiques : il faut former les agents territoriaux à de nouveaux modes de gestion écologique dans un contexte budgétaire de baisse des dotations des collectivités locales. Comme le dit un élu : « Je ne transformerais pas en bonhomme vert un maire très bétonneur mais peut-être qu’il ira plus loin que ce qu’il aurait de lui-même fait parce que dans une dynamique collective […] en mettant d’ailleurs les citoyens et les associations dans le jeu parce que les élus restent quand même toujours très sensibles… les citoyens sont très demandeurs d’un renforcement de la place de la nature en ville. […] Il n’y a pas une politique publique qui ne soit qu’institutionnelle, c’est impossible ».

L’analyse des discours montre également une coexistence de plusieurs rationalités chez les acteurs interrogés qu’on peut classer en deux catégories inspirées des travaux de H. Simon (Simon, 1956) et de R. Boudon (Boudon, 2007) qui contredisent l’idée d’un choix rationnel fondé sur des préférences stables et des critères de choix objectivés. D’une part, on identifie des rationalités dites limitées dont les logiques d’action ne sont pas stables et dont les actions elles-mêmes sont contraintes par les compromis d’une gestion conjoncturelle. Celles-ci conduisent à choisir la solution satisfaisante plutôt que la solution optimale. A ce titre, nous avons proposé aux élus une hiérarchisation du répertoire des motivations en faveur de la conservation de la biodiversité urbaine (Dearborn et Kark, 2010). Leurs réponses s’établissent selon une double hiérarchie avec un axe qui oppose des élus qui donnent la priorité au local contre la MGP et un axe qui donne la priorité aux questions socioéconomiques et sociopolitiques contre les questions de naturalité et de biodiversité. La figure 3 présente la répartition des postures à partir de ces deux axes le long desquels il semble qu’il y ait préférence des questions sociopolitiques et socioéconomiques pour des élus qui privilégient le local alors que les élus qui donnent la priorité aux questions de naturalité et à la biodiversité semblent faire plus facilement référence à la MGP.
Figure 3 : répartition des postures des élus de la Métropole du Grand Paris selon deux axes de préférences dans les politiques publiques estimées

Ces discours donnent un important crédit à certaines formes d’innovations territoriales comme celles de Plaine Commune, de Montreuil ou de la Mairie de Paris. En outre, le fait que les acteurs ne soulignent pas une dégradation de la qualité de l’environnement parisien à l’échelle de la MGP et que le déclin de biodiversité met en péril les services que celle-ci rend à l’homme expliquerait cette faible maturité stratégique. La prise en compte de cette donnée, qui est du registre du risque (au même titre que le réchauffement climatique), pourrait être à l’origine de la légitimation d’une action forte pour permettre de conserver la biodiversité. En effet, seuls 12 acteurs sur 21 confirment que la biodiversité est « menacée » à l’échelle du Grand Paris. Tous en revanche, soulignent que cette situation est compensée par diverses actions politiques en faveur de la nature en ville comme le Plan Biodiversité de Paris, mais aussi en avançant la mise en place de mesures d’économie d’énergie et d’adaptation au changement climatique. La valorisation de la biodiversité dans un écosystème urbain relève donc, pour la plupart, d’un domaine d’actions en devenir pour les collectivités territoriales. Enfin, il convient de souligner que les élus mettent en avant la place que peuvent jouer les infrastructures linéaires de transport et leurs emprises naturelles comme axes de pénétration de la nature : le terme transport intervient 168 fois et il est souvent évoqué en proximité de termes comme biodiversité ou nature.

Conclusion

La difficulté de penser une action environnementale supra-communale peut également s’expliquer par des facteurs organisationnels. En effet, la configuration du système intercommunal des territoires du
Grand Paris présente une grande hétérogénéité. La constitution d’une communauté urbaine a tardé à voir le jour par rapport aux autres métropoles françaises et étrangères notamment à cause d’une résistance historique de l’État ajoutée à l’hostilité de la Ville de Paris à voir l’émergence d’un pouvoir intercommunal fort depuis les années 1960 (Subra, 2012). L’exception du système de gouvernance du Grand Paris peut s’expliquer par la complexité du système d’acteurs présent antérieurement à la mise en place de la MGP. Certaines rivalités partisanes anciennes ont surgi au moment de la définition du périmètre de la MGP ou lors de l’élection de certains présidents de territoires comme celui du T11. Par conséquent, certains EPT semblent être des territoires hybrides où la longue mise en place d’une intercommunalité de gestion administrative prend le pas sur la fondation d’une intercommunalité de projet territorial. Ce phénomène est beaucoup moins vrai pour d’autres métropole comme Nantes-Métropole ou Lyon-Métropole qui présentent d’autres configurations politiques (Galimberti et al., 2014). Dans cette optique, les éléments de blocage sont d’ordre administratif : les intercommunalités constituées avant la mise en place de la MGP sont les plus à même de réfléchir à un projet commun environnemental, quand celles qui viennent de se constituer doivent faire face à des restructurations organisationnelles.

D’après notre enquête auprès de certains élus de la MGP, la stratégie de valorisation de la biodiversité se structure surtout autour d’opérations de communication profitant de l’effet d’opportunité et d’entraînement suscité par un sujet qui est censé faire consensus et qui a déjà fait l’objet d’opérations à l’échelle de certains territoires de la MGP. A ce titre, ce que Boltanski et Thévenot annonçaient déjà comme une nouvelle forme de justification de la « cité verte », s’illustre ici par l’intégration des actions environnementales dans les propres stratégies de communication des acteurs publics. La valorisation par l’exemple des mesures vertes, qui met pour l’instant de côté la constitution d’un plan Biodiversité pour la Métropole en l’intégrant exclusivement dans des problématiques énergétiques via le Plan-Climat, servirait à affirmer la nouvelle identité de la métropole du Grand Paris, l’environnement deviendrait ainsi un des points d’appui de la naissance de ce nouveau territoire (Elden, 2013). Dans cette hypothèse, qui prolonge celle de S.Elden (2010), il semble que c’est donc en abordant les questions de projet environnemental que l’on peut saisir l’unicité de la configuration
territoriale de la MGP. L’ancrage géographique des élus reste celui de leur territoire d’action confié par leur mandature. Peu nombreux sont les élus qui parviennent à penser une action politique qui s’appliquerait à l’ensemble des territoires du Grand Paris. La conception d’une nouvelle entité territoriale peut donc émerger aussi dans la place prééminente que peut prendre la question environnementale (Murphy, 2012) et au sein de celle-ci la biodiversité. On constaterait alors l’apparition d’un double front écologique, celui matérialisé par la pénétration et le développement d’espaces de nature favorisés par les politiques publiques urbaines mais aussi la contribution à la construction d’un nouveau territoire en partie porté par les questions de biodiversité et les questions environnementales.

Remerciements

Les auteurs tiennent à remercier les deux programmes de recherche dans lesquels cette étude est intégrée, le programme ECOVILLE, en réponse à un appel à projets de l’Agence Nationale Française de la Recherche et le programme ITTECOP, deux programmes qui soutiennent financièrement cette étude.

RÉFÉRENCES BIBLIOGRAPHIQUES

Blanc N. et Clergeau P., 2010. Installer une trame verte dans la ville Le point de vue des chercheurs?

60

Machon N (sous dir.), 2012. *Sauvages de ma rue*, MNHN, Lepassage, 415p

2-3. Les avis des opérateurs et gestionnaires

Auteurs : Nicolas Almodovar, Fatima Assalih, Orlane Déliaïs, Laure Loiseau, Constantin Magne, Clara Simonny, Pierre Pech

Ce travail a fait l’objet d’un atelier du master DDMEG, Développement Durable Management Environnemental et Géomatique de Paris 1. Il s’agissait d’effectuer des entretiens auprès d’acteurs en charge de la gestion de la biodiversité sur les ILTe, en vue de comprendre quels étaient leurs modes de gestion de cette biodiversité sur les ILTe.

2-3-1. La grille d’entretien

La construction de la grille d’entretien a débuté en premier lieu par le choix des destinataires du questionnaire. Ces derniers sont scindés en deux catégories : « les opérateurs » et les « professionnels de la biodiversité ». Les opérateurs rassemblent tous les organismes porteurs du programme ITTECOP, gestionnaires d’ILTE et ayant, par conséquent, intérêt et motivation dans l’étude de la renaturation. Les professionnels de la biodiversité sont les principaux acteurs de la mise en pratique de la renaturation. Ce sont eux qui disposent des connaissances nécessaires en la matière.

Afin que les questions soient adaptées au profil de chaque organisme interrogé, deux versions principales du questionnaire ont été créées : la première, à destination des opérateurs et, la deuxième, à destination des professionnels de la biodiversité. Chaque version du questionnaire permet ainsi de cerner au mieux les apports des catégories d’organismes interrogés.

Chacune des questions a été élaborée minutieusement en fonction des objectifs à remplir du projet RENATU. Cette étude ayant été menée par des spécialistes de diverses origines (économie, droit, géographie et géomatique), tous les aspects de la renaturation ont été traités dans le questionnaire. Ainsi, le questionnaire à destination des opérateurs a été divisé tel qu’il suit :

A) État des lieux dans le Grand Paris
B) L’utilité de la nature dans le Grand Paris
C) Contraintes supportées, blocages rencontrés dans le Grand Paris
D) Quelle nature souhaitée dans le Grand Paris ?

De même, le questionnaire destiné aux professionnels de la biodiversité a été catégorisé de cette manière :

A) Expérience en matière de renaturation
B) État des lieux de la nature rencontrée le long des ILTe au sein du Grand Paris
C) Souhait de nature le long des ILTe du Grand Paris

Le questionnaire a ensuite été envoyé par e-mail à chaque organisme avec relance si besoin. Les retours ont été divers. Sur 26 personnes contactées, 9 n’ont pas ou ont refusé de répondre, 10 n’ont plus répondu après un premier échange de mails, une seule a rempli directement le questionnaire et 6
ont convenu d’un entretien. Particulièrement, les gestionnaires des réseaux routiers, n’ont pas souhaité participer à l’étude alors que leur ILTe est la plus importante en termes d’emprise.

Ces entretiens ont été menés par trois représentants du projet RENATU ayant chacun une spécialité propre (économiste, juriste, géographe ou géomaticien). La plupart des questions étant ouvertes, c’est-à-dire ne demandant pas une simple réponse positive ou négative, les personnes interrogées avaient la possibilité d’argumenter longuement leurs positions, leurs avis. De même, le questionnaire n’étant pas fixe, certaines interrogations ont émergé au cours du dialogue et des questions ont pu être modifiées ou complétées. Ainsi, les entretiens n’ont pas été succincts et ont duré entre 1h15 et 3h. Il y a eu environ 10 heures d’échanges. Un enregistrement oral, par microphone, a eu lieu pour chaque entretien permettant leur retranscription exacte.

Ainsi, les retranscriptions avaient pour but de permettre la construction de l’étude. En effet, la finalité des retranscriptions brutes des entretiens était de conserver des archives de ce qui s’était exactement dit, alors que les versions retravaillées de ces retranscriptions ne mettent en lumière que les points indispensables à l’étude, pour ne garder que l’essentiel. Enfin, contrairement aux deux versions précédentes, les versions interprétées se centrent, non pas sur ce qui est dit, mais sur ce qui transparaît des dires des personnes interrogées. Cette analyse qualitative des entretiens correspond à l’étape la plus longue de la première phase du projet RENATU. Ainsi, en incluant toutes les heures passées à retravailler les entretiens, le temps de travail total atteint plus d’une cinquantaine d’heures.

2-3-2. Les perceptions des acteurs, opérateurs et gestionnaires

Nos entretiens ont été effectués auprès de l’ensemble des parties prenantes, à savoir Voies navigables de France, Réseau de transport d’électricité, EIFFAGE, SNCF dont une personne de SNCF Réseau, pour les gestionnaires d’ILTe, ainsi que l’Association ESPACES et l’Agence de l’écologie urbaine pour les professionnels de la biodiversité.

L’objectif consistait à mettre en exergue la perception des acteurs interrogés quant à la renaturation le long des ILTe au sein du Grand Paris (A), puis d’exposer les clés de la réussite d’un projet de renaturation (B), qui seront ensuite illustrées par quelques cas concrets (C).

A- Les perceptions de la renaturation

Chaque partie prenante possède sa propre définition de la renaturation (1) pour une nature très diversifiée le long des ILTe (2). Même s’ils possèdent des intérêts à la renaturation (3), des contraintes peuvent freiner ce processus (4).

La toute première question posée, tant aux commanditaires qu’aux professionnels de la biodiversité, était de savoir quelle était leur propre définition de la renaturation.

Du point de vue de VNF, il s’agit de laisser « la nature reprendre sa place », tandis que pour Eiffage, par exemple, la renaturation relève davantage de la « récréation de nature ». SNCF Réseau va encore
plus loin et envisage la renaturation comme une opération permettant « d’enlever les plantes invasives ».

Quant aux professionnels de la biodiversité, tels que l’Association ESPACES, la renaturation signifie « redonner la fonction naturelle à un écosystème perturbé par l’homme ». De même, pour l’Agence Ecologie Urbaine, ce processus implique de « redonner une place à la nature, lui permettre de reconquérir l’espace urbanisé en le déminéralisant ».

La pluralité des réponses obtenues témoigne de la nouveauté du terme de renaturation. Cela montre également à quel point cette définition est subjective : elle dépend véritablement de la perception de chaque individu. Ainsi, les professionnels de la biodiversité, lesquels ont une sensibilité environnementale généralement plus développée que les commanditaires, vont être davantage à même de proposer une définition complète et détaillée de ce que signifie pour eux la renaturation. En revanche, les commanditaires semblent moins au fait de cette définition que les professionnels de la biodiversité.

Globalement, il s’agit d’une terminologie nouvelle, imprécise, qui soulève de nombreuses questions, en particulier du côté des commanditaires qui, bien souvent, n’avaient jamais entendu le mot « renaturation » auparavant.

Toutefois, quel que soit l’organisme d’appartenance des acteurs interrogés, l’élément central de la renaturation reste, d’après eux, la nature. Or, cette nature n’est bien évidemment pas la même d’une ILTe à une autre.

La nature observable le long des ILTe est très variée et diffère, quantitativement et qualitativement, en fonction du milieu et du type considérés. Il n’est donc pas envisageable de réduire à une seule catégorie la nature présente le long des ILTe.

Trois milieux particuliers sont présents dans le Grand Paris : le milieu urbain, le milieu rural et le milieu périurbain. Ainsi, la biodiversité aura tendance à être plus forte, plus riche en milieu rural qu’en milieu urbain. Cependant, certains espaces urbains, notamment fermés, tels que la Petite Ceinture, renferment une biodiversité qui peut être restreinte mais riche avec des espèces rares et protégées au niveau régional. En outre, plusieurs types de milieux sont à prendre en compte dans le Grand Paris puisqu’ils ont chacun une nature spécifique (friche, zone humide, prairie, sous-bois, etc).

De plus, de nombreux critères influent sur la biodiversité présente le long des ILTe. En premier lieu, la taille du milieu. Plus l’espace sera important, plus la nature tendra à être riche. Il en va de même pour des emprises à proximité de zones naturelles ou ayant des sols végétalisés. A l’inverse, un milieu à proximité de zones d’habitations, ayant des sols artificialisés ou comportant des éléments fragmentants (autoroute, escaliers, tunnels, etc) ne sera pas propice au développement d’une biodiversité variée.

Enfin, le dernier point remarquable de la nature le long des ILTe est son rôle de corridor écologique. En effet, de par leur nature plus ou moins continue, les ILTe peuvent devenir des axes de déplacement de nombreuses espèces.
De par la diversité de cette nature, la renaturation possède une utilité certaine, tant d’un point de vue socio-économique qu’environnemental.

B. Les intérêts de la renaturation

Lors des différents entretiens menés, il s’agissait également de savoir quelle serait l’utilité liée à la renaturation dans le Grand Paris, pour les gestionnaires de réseaux et les professionnels de la biodiversité. Le schéma ci-dessous illustre la pluralité des intérêts d’une renaturation et leur inter-dépendance. Les trois piliers du développement durable en ressortent très nettement :

![Figure 2 : Les intérêts d’une renaturation](image)

La renaturation peut apparaître comme un atout pour l’entreprise afin améliorer son image et son attractivité. Comme le confiait le spécialiste “Maîtrise végétation” à l’infrapôle de Paris-Nord de la SNCF : « L’image de la SNCF n’est pas forcément très positive alors insister sur le côté développement durable de l’entreprise, cela pourrait être un moyen de compenser ». L’image renvoyée aux riverains et aux collectivités est, sans être primordiale, une raison suffisante pour amener certaines entreprises à soigner leurs ILTe.

Le cadre réglementaire et l’obligation de s’y plier peuvent faire de la renaturation un moyen d’anticiper des nouvelles réglementations futures. En exemple peut être citée l’utilisation des produits...
phytosanitaires, en passe d’être proscrite dans les années à venir. Ces derniers pourraient être remplacés par l’introduction d’une nature qui serait autonome et ne nécessiterait que peu d’intervention humaine pour son entretien.

Enfin, l’utilité de la nature pourrait être d’apporter des services opérationnels aux entreprises. Du maintien des berges pour VNF au maintien des talus pour la SNCF, la renaturation semble en mesure à long terme de diminuer les coûts d’entretien. Le coût des palpanches pour VNF, en prenant compte du coût d’installation et d’entretien, est d’environ 30 000 euros.

L’idée serait donc de remplacer les différentes techniques de génie civil par des techniques de génie végétal, qui auraient la même finalité à moindre coût.

Il apparaît que les intérêts de la renaturation pour les professionnels de la biodiversité semblent se porter davantage sur l’intérêt écologique. Les différents entretiens menés, avec l’Association ESPACES par exemple, ont démontré que la renaturation pouvait véritablement apporter des services écosystémiques importants : puits à carbone, refroidissement de l’air ambiant, amélioration de la qualité de l’eau, etc.

Enfin, la renaturation peut avoir un intérêt social. Par exemple, la SNCF fait fréquemment appel à l’Association ESPACES, qui emploie de personnes en réinsertion, pour diverses opérations sur les talus. De même, l’aspect paysager et récréatif a été cité, tant par les gestionnaires que par les professionnels de la biodiversité, comme un élément tout aussi déterminant dans la volonté de renaturer, dès lors qu’il était possible de l’allier à un coût d’entretien faible.

Les intérêts à la renaturation sont donc divers et nombreux. Cependant, il existe des contraintes, notamment réglementaires et techniques, qui peuvent freiner ce processus.

Au fil des entretiens, l’aspect sécuritaire est sans doute apparu comme la contrainte la plus forte. L’objectif principal des gestionnaires de réseaux, qu’ils soient de transport de personnes, de marchandises ou d’énergies, est de maintenir un approvisionnement continu avec une sécurité maximum. Il en découle de nombreuses règles fondamentales en matière de sécurité. La nature issue de l’opération de renaturation devra obligatoirement se plier à ces dernières, qui varient selon la typologie du réseau.

Pour SNCF Réseau, la sécurité porte avant tout sur la gestion des talus et de la protection des rails : « La maîtrise de la hauteur de la végétation est une obligation que nous sommes obligés de respecter pour des raisons évidentes de sécurité […]. Le règlement est zéro végétation sur la plateforme (là où roule le train) plus 70 centimètres sur les côtés (là où il y a la piste) là on applique un traitement phytosanitaire plusieurs fois par an ».

Quant à VNF, il s’agit essentiellement de la gestion des berges et de la protection des écluses et barrages : « […] les arbres, quand ils tombent à l’eau, peuvent entraîner des dysfonctionnements dans nos écluses et nos barrages. Donc nous coupons et nous empêchons la végétation de trop se développer sur les berges afin d’éviter qu’elles ne les désabilisent ».
Enfin, pour RTE, l’objectif principal est la gestion du linéaire et la protection des pylônes et des câbles : « comme les conducteurs sont isolés dans l’air, c’est-à-dire qu’il n’y a pas d’isolant autour du conducteur, c’est directement le métal sous tension. […] Rien qui soit relié au sol ne doit pénétrer dans cette épaisseur d’air de 3-4 mètres, sinon cela crée un arc électrique. En particulier, il ne faut pas qu’il y ait d’arbres, de maisons, de gens. La règle en France, c’est de ne pas s’approcher à moins de 5 mètres du conducteur ».

La particularité des ILTe provient de leur emprise qui se compose de kilomètres de linéaires traversant des milieux naturels divers. Garantir des conditions de travail décentes et conformes à la loi peut s’avérer difficile quant au respect des normes sanitaires et plus généralement du droit du travail : « Le travail sur les talus est très fatiguant. Cela est notamment lié à la pente […]. Les contraintes que nous allons avoir, c’est aussi avec la direction du travail. Ils sont très regardant avec les salariés en insertion à ce que toutes les conditions soient présentes pour le travail (travail en sécurité, des sanitaires, etc) » (RFF).

Par ailleurs, la fréquence élevée du trafic en tissu urbain dense limite la temporalité d’action des opérateurs, particulièrement pour SNCF où la fenêtre d’intervention est très faible au sein de la métropole : « La nuit, le dernier train est vers 00h30 et le trafic reprend vers 5h. La contrainte liée au temps est donc importante ».

Le souhait de renaturation des ILTe provient avant tout de la politique de l’entreprise et de ses employés. Ainsi, une absence de volonté en interne peut constituer un frein à la renaturation. De même, un déficit en connaissances, qui peut se traduire par des idées reçues, est également préjudiciable à la renaturation : « Il y a des mœurs à casser comme, par exemple, l’idée que le béton est plus efficace que le végétal » (Association ESPACES). « Il n’y a pas suffisamment de publications en la matière » (RTE). Cela suppose la diffusion des connaissances en matière de renaturation ainsi que l’intégration des problématiques environnementales dans des métiers originaires du génie civil. En effet, instaurer un processus de renaturation nécessite d’avoir recours à des acteurs de terrains formés et initiés aux enjeux de la renaturation, tels que l’Association ESPACES.

Si multiplier des partenariats avec des acteurs confirmés de la renaturation est une condition nécessaire pour développer ces nouvelles pratiques, elle n’en est toutefois pas une condition suffisante. Convaincre les riverains et les collectivités du bien-fondé de la démarche est aussi essentiel pour sa réussite et son acceptabilité. En effet, le secteur géographique du Grand Paris place le projet RENATU dans un contexte urbain très dense, où la proximité entre les riverains et les réseaux peut parfois être source de conflits : « Les problèmes surviennent lors de la première étape de coupe et de défrichage. En effet, le temps que les végétaux repoussent, cela ouvre un visu sur la ligne de transport qui gêne les riverains » (Association ESPACES) ; « Plus on s’approche de Paris et plus les riverains sont nombreux et près de nos emprises, la pression est donc plus forte pour que nos talus soient bien entretenus. A l’approche des villes on observe un intérêt plus fort pour l’environnement ce qui explique que plus d’actions soient menées dans ces zones » (SNCF).
Utiliser l’emprise des ILTe pour réinstaurer des continuités écologiques est donc un objectif ambitieux. Sa réussite dépend de la capacité des acteurs de la renaturation à concilier fonctionnement du réseau et aménagements de qualité. La renaturation ne pourra se faire sans la prise en compte en amont de l’ensemble des contraintes inhérentes au bon fonctionnement des réseaux. Ces contraintes peuvent être surmontées grâce à différents éléments qui garantissent le succès d’un projet de renaturation.

La réussite d’un projet de renaturation passe dans un premier temps par une coopération entre les différents acteurs concernés (1), combinée à l’emploi de techniques de génie végétal (2). Ce succès repose également sur l’utilisation de deux outils techniques fondamentaux (3), ainsi que sur un financement approprié (4).

1- Une coopération multi-acteurs

![Figure 3 : Les acteurs de la renaturation](image)

Afin de mener à bien une action de renaturation, les acteurs sont nombreux. Ils doivent coopérer tout au long de la vie d’un projet. Chaque gestionnaire d’ILTe est responsable de son réseau. Il peut ainsi impulser ou non une volonté de renaturer. Tout d’abord, les services en charge du développement durable des ILTe et les acteurs de la renaturation (ex: les associations d’insertion) travaillent ensemble afin d’identifier les sites potentiellement renaturables. Ensuite, avant toute action, les gestionnaires d’ILTe commandent un inventaire faunistique et floristique de la zone à renaturer. Le but est de connaître la faune et la flore présentes et d’adapter les aménagements en fonction de la nature que l’on souhaite préserver et réimplanter. Ces inventaires peuvent être réalisés par des bureaux d’études, Biotope étant reconnu dans ce domaine, ou par des experts de la biodiversité. Ainsi, le Muséum
National d'Histoire Naturelle a pris l'initiative de réaliser un inventaire sous 300 kilomètres de lignes appartenant à RTE en région parisienne. Une grande quantité d'espèces a pu être identifiée, dont certaines sont emblématiques et très rares. Le polygala chevelu, considéré comme disparu d'Ile-de-France depuis les années 1960, a été ainsi observé durant cette période d'inventaire. La SNCF, quant à elle, fait régulièrement appel à des associations et autres spécialistes de la biodiversité, notamment au Conservatoire botanique national du Bassin parisien. Suite à cet inventaire, il est possible d'intervenir sur le terrain. Les gestionnaires de réseaux et les autres acteurs vont travailler de pair. La SNCF, par exemple, commence par réaliser une remise en état du talus et un cahier des charges. Une étude de terrain sera effectuée afin d'identifier les sites fragiles d’un point de vue structure des sols et corridors.

Pour ce faire, des associations d'insertion (ex : ESPACES, Halage) peuvent se faire aider par des bureaux d'études spécialisés dans le génie végétal. Certaines ont acquis, au fur et à mesure des projets, les compétences nécessaires pour être à même de réaliser les études de terrain en interne (transfert de compétences). Puis, après avoir réalisé des avant-projets sommaires, les associations présentent leur proposition finale aux gestionnaires des ILTe. Ces derniers valident ou non les travaux. Une fois les budgets validés, le projet de renaturation débute avec, tout d'abord, l’aménagement, puis l’entretien et le suivi. L’emprise locale des projets permet d’intervenir quotidiennement : c’est la force des structures d'insertion. Ensuite, soit les mairies, soit les associations d'insertion, prennent en charge l'entretien des talus.

Pour finir, afin de mener à terme ces projets de renaturation, il faut trouver des financements. Un autre type de coopération se met alors en place. Les pouvoirs publics y jouent un rôle indispensable. Chaque chantier reçoit 75% d'aides publiques (État, région, Conseil Général). Les 25 autres pourcents sont supportés par le commanditaire lui-même. Par exemple, la SNCF investit entre 30 000 et 40 000 euros dans chaque projet.

La coopération multi-acteurs est ainsi essentielle au bon déroulement d’un projet de renaturation. Toutefois, elle doit être combinée avec l’emploi de techniques de génie végétal. Un projet de renaturation ne pourra être efficient que si la nature est appropriée à l’ILTe considérée. Quelle que soit l’ILTe, la nature pourra être « ordinaire », c’est-à-dire sans spécialement d’espèces rares mais avec des espaces régionales, donc habituées à la climatologie du site. Cela pourra être une nature « spontanée », c’est-à-dire pour laquelle la qualité des sols a été améliorée (décompaction, dépollution) et qui s’est, d’elle-même, implantée sur la zone. Enfin, puisque la renaturation ne concerne pas seulement la flore mais aussi la faune, cette nature doit être nourricière afin d’approvisionner en nourriture les espèces, notamment du sol, qui vont s’y développer. Le choix des espèces à planter est ainsi primordial. Il faudra faire particulièrement attention à :
- leur hauteur et leur ampleur à maturité.
- leur sensibilité aux conditions climatiques.
- la profondeur et l’emprise de leur système racinaire.
Le génie végétal rassemble les techniques utilisant la flore comme matériau dans la construction d’ouvrages. En effet, bien pensée, la flore peut permettre de protéger les sols contre l’érosion, de les stabiliser et de les régénérer.

Pour les voies d’eau, le génie végétal est utilisé pour le maintien des berges. En effet, même si le génie végétal est plus difficile à mettre en œuvre, son coût est généralement moindre que le génie civil sur le moyen à long terme. De même, si les plantes peuvent mettre du temps à se développer, leur durabilité est assurée pour l’avenir, ce qui n’est pas le cas du génie civil (ex : les palplanches doivent être renouvelées tous les 30 ans).

Pour les talus ferroviaires, le génie végétal privilégiera des plantes basses, ayant des racines horizontales et n’étant pas grimpantes.

Une fois déterminés le type de nature et la technique de génie végétal à lui appliquer, il est également nécessaire de considérer son entretien. L’une des requêtes communes à tous les gestionnaires d’ILTe était le souhait d’une nature ayant besoin le moins possible, voire pas du tout, d’entretien. Ainsi, il faut favoriser une flore indigène, avec des espèces bien acclimatées à la région pour garantir une autonomie du milieu. Il faut privilégier une gestion adaptée aux usages et aux paysages recherchés.

Le seul entretien devra être celui des espèces invasives. En effet, comme le souligne l’Agence Ecologie Urbaine, « la question des espèces invasives est une problématique qui touche toute zone naturelle aujourd’hui. Il n’y a pas de solution miracle pour y remédier. Une veille doit être mise en place, et des protocoles adaptés sont à élaborer dans chaque cas. Le danger induit par la création de corridors est le déplacement encore plus rapide de ces espèces invasives, et une concurrence plus redoutable avec les espèces autochtones ».

L’Association ESPACES a, par exemple, mis en place un protocole complet de gestion des nuisibles. Tout d’abord, toutes les espèces de la zone sont recensées par un botaniste. Puis, un livret est distribué aux salariés travaillant sur place pour identifier et gérer les espèces. Des cartographies sont établies en fonction. L’association met alors en place des techniques de gestion combinant opérations manuelles (ex : arrachages) et réaménagement avec des espèces locales qui luttent contre les invasives par leur système racinaire et leur ombrage. Ainsi, pour l’Association ESPACES, « l’objectif est d’observer la station à l’état zéro, comment elle se comporte, pour observer au fur et à mesure de la gestion, via un travail de cartographie, l’évolution des espèces envahissantes pour enfin avoir un indicateur sur la gestion des espèces exotiques ». Avec ce protocole de gestion des invasives, l’Association ESPACES peut évaluer l’efficacité de ses méthodes dans le temps.

Une nature appropriée, mise en oeuvre par des techniques de génie végétal, est donc nécessaire pour la réussite d’un projet de renaturation selon les parties prenantes. Ces dernières ont aussi identifié des outils techniques qui participent à ce succès.

Les outils techniques indispensables au bon déroulement d’une opération de renaturation sont au nombre de deux : des cartographies et des inventaires. La cartographie est déjà à l’œuvre chez les gestionnaires de réseaux et les professionnels de la biodiversité. Cependant, même si cette dernière est
détailée, elle est souvent effectuée sur des secteurs restreints. Il n’y a donc pas de vision d’ensemble sur une ILTe entière. De même, il n’y a pas, entre organismes, de mise en commun des cartes réalisées. Chaque carte est propre à la partie prenante qui l’a produite. Ce phénomène peut s’expliquer, entre autres, par l’absence de numérisation des cartes. Cela est déploré par plusieurs parties prenantes, dont l’Association ESPACES : « Je pense qu’à un moment donné il faudra faire ce travail de cartographie, notamment dans le cadre des trames vertes et bleues ».

Les inventaires sont les seconds accessoires nécessaires à la renaturation. Ils sont nombreux et divers puisqu’ils concernent tant la faune (avifaune, batraciens, insectes pollinisateurs, ect.) que la flore, les eaux ou les sols.

Certaines parties prenantes ont développé leurs propres méthodes d’inventaire, les ont intégrées à leurs process de travail et ont, pour cela, des salariés formés en la matière.

Enfin, les parties prenantes peuvent également avoir recours à un organisme externe, tel qu’un bureau d’étude, pour réaliser des inventaires pour lesquels ils ne disposent pas de connaissances techniques assez poussées (ex : ESPACES avec les insectes).

L’ensemble de ces outils techniques (inventaires et cartographies) ne peut être mis en place sans un financement approprié.

Pour être efficiente, la renaturation des ILTe se doit d’être intégrale, systématisée et durable. Son déploiement à l’échelle des entreprises suppose un certain nombre d’investissements initiaux pouvant être conséquents. Or, en ces temps de restrictions budgétaires, les fonds, tant privés que publics, éventuellement disponibles et pouvant être alloués à ce genre de processus innovants, se font rares. La réussite d’un projet de renaturation dépend par conséquent d’un coût d’aménagement et d’entretien équivalent ou inférieur au budget de maintenance actuel. Il s’agit en outre de mobiliser l’ensemble des parties prenantes du territoire pour un financement diversifié et ne pesant pas intégralement sur les finances des gestionnaires de réseaux.

Ainsi, comme expliqué précédemment, la typologie des réseaux et les contraintes, notamment en termes de sécurité, engendre un poste de dépense de maintenance phénoménal se chiffrant à plusieurs millions d’euros par an. Comme le précise RTE, il apparaît évident qu’une partie de ce budget de maintenance pourrait être allouée au processus de renaturation : « Nous dépensons plusieurs millions par an en gyrobroyage. Si nous utilisons ce budget pour faire autre chose, cela ne coûtera pas plus cher au client. Le tarif est fonction de nos dépenses ». Cependant, débloquer des fonds n’est pas une
condition suffisante. Pour être utilisés de manière optimale, des acteurs formés aux techniques et aux process de renaturation sont nécessaires : « Le financement, quand il y en aura un, devra également s’accompagner de moyens humains [...] si l’on donne une charge de travail supplémentaire et juste une enveloppe budgétaire, cela ne suffira pas » (SNCF).

Favoriser un processus de formation en interne de l’ensemble des salariés pouvant être acteurs de la renaturation est un dispositif long et coûteux. C’est pourquoi il apparaît fondamental pour les gestionnaires de réseaux de multiplier les partenariats avec des acteurs de la renaturation.

Dans le même temps, il apparaît essentiel de renforcer les partenariats avec les associations d’insertion car leur statut juridique offre une opportunité de financements publics diversifiés : « Le budget de l’Association ESPACES, c’est 4,5 millions d’euros à l’année avec un peu plus d’un million pour l’Agence de l’eau, puis le Conseil Régional Ile-de-France au titre de la biodiversité, le Conseil Général des Hauts-de-Seine, des Yvelines, puis les communes et enfin le privé » (Association ESPACES).

En somme, les pratiques de renaturation des ILTe doivent avant tout justifier de leur efficacité technique et financière afin de puiser dans les budgets de maintenance des grandes entreprises de réseaux. Développer des partenariats avec des acteurs de l’économie sociale et solidaire spécialisés dans l’insertion par l’activité économique via l’écologie urbaine permet de remplir les trois objectifs social, économique et environnemental du développement durable, permettant ainsi l’obtention de fonds publics essentiels à l’émergence de pratiques innovantes.

La coopération entre différents acteurs ainsi que des techniques de génie végétal associées à des outils techniques et un financement adéquat sont les éléments nécessaires à la réussite d’une renaturation opérationnelle.

2-3-3 Deux exemples de modes de gestion

L’Association ESPACES est l’un des acteurs utilisant ces “clés” pour mener à bien des projets de renaturation (1). La Petite Ceinture, quant à elle, est un parfait exemple de leur mise en pratique concrète (2).

1- L’Association ESPACES : l’insertion professionnelle via l’écologie urbaine

travers de chantiers thématiques autour de la gestion de la Petite Ceinture et de l’aménagement des berges de Seine, ainsi que d’activités de maraîchage, jardins partagés et travaux forestiers hippomobiles. Très peu mécanisée, elle forme ses salariés aux anciennes techniques d’aménagement, ce qui limite les zones d’intervention mais permet des aménagements de grande qualité. Son histoire a débuté par une collaboration avec VNF sur la thématique Seine. Depuis une dizaine d’années, elle intervient sur des aménagements de la Petite Ceinture et des talus ferroviaires des Hauts-de-Seine et des Yvelines, en partenariat avec SNCF Réseau. L’objectif social et environnemental d’ESPACES, son expertise technique et professionnelle ainsi que ses résultats probants lui ont permis de construire des partenariats durables avec les gestionnaires de réseaux. Un chantier d’insertion se compose d’une équipe de 7 à 8 personnes travaillant 26 heures par semaine et accompagnées d’un encadrement technique.

L’association a développé en parallèle :
- une centralisation des techniques et savoirs-faire dans le domaine de l’aménagement urbain écologique et durable (renaturation, végétalisation, agriculture biologique, semis etc.)
- une connaissance fine et globale du territoire et de ses enjeux.

Depuis maintenant plus de 20 ans, elle capitalise son expérience de terrain et valorise son expertise et ses accomplissements auprès de l’ensemble des parties prenantes, qu’elles soient Etat, établissements et collectivités publics, partenaires et grand public.

Ainsi, l’Association ESPACES a pu, grâce à l’écologie urbaine, réaliser de nombreux projets de renaturation via l’insertion professionnelle. Elle est notamment intervenue sur la Petite Ceinture, lieu d’action privilégié des associations d’insertion dans Paris intra-muros.

2. Le cas de la Petite Ceinture : une collaboration entre entreprises d’insertion
La Petite Ceinture, à Paris, s'étend sur 32 kilomètres, dont 20 kilomètres délaissés par la SNCF. Des opérations se sont multipliées au cours des années afin de redonner une place à la nature sur ces 20 kilomètres. Ces actions de renaturation répondent à la Stratégie Régionale pour la Biodiversité (SRB) votée par le Conseil Régional d'Ile-de-France. La SRB a notamment pour objectif le maintien et la restauration des continuités écologiques. Les talus ferroviaires végétalisés forment des espaces privilégiés pour le déplacement de la faune et de la flore. Les talus deviennent ainsi des corridors écologiques permettant de relier les espaces naturels entre eux.

SNCF Réseau a confié la gestion du réseau à Chantier École, une autre association d’insertion. Cette dernière a alors déterminé un zonage de l’activité. Les opérations de renaturation s'effectuent en concertation entre l'ensemble des associations. Ainsi, une rencontre a été récemment organisée afin de partager et d'harmoniser les bonnes pratiques de gestion des corridors, plus particulièrement en ce qui concerne les plantes invasives, exotiques et envahissantes. En effet, il faut les empêcher de circuler le long de la Petite Ceinture. Même si la renaturation a pour objectif de favoriser le déplacement des espèces, il faut éviter les dérives et être vigilant sur les espèces présentes sur le territoire. Pendant longtemps, la gestion de la Petite Ceinture s'est effectuée en cycle fermé. Aujourd'hui, tout est mis en œuvre afin de tendre vers le partage des connaissances notamment en faveur des associations ne disposant pas de services techniques. L'objectif final est d'aboutir à une coopération.

Au cours des entretiens, les parties prenantes, gestionnaires de réseaux et professionnels de la biodiversité, ont donc exposé leur vision de la renaturation et de sa mise en œuvre le long des ILTe du Grand Paris. De là, une analyse retranscrite sous forme de synthèse a pu être effectuée et des préconisations ont pu être émises.
2-4. Renaturation, ILTe et questions foncières

ARTICLE ACCEPTE PAR LA REVUE FONCIERE

Le cas de l’E-R-C – Eviter-Réduire-Compenser – pour les infrastructures linéaires de transport : un double effet sur le foncier

Auteurs : Pech Pierre¹, Clevenot Laura¹, Fournès Jean-Marc¹, Giney Delphine¹, Lavaux Sarah², Lemeri Joachim², Riboulot-Chetrit Mathilde¹, Laura Thuillier³

1- UMR CNRS Université Paris I Panthéon-Sorbonne LADYSS, 2 rue Valette 75005 Paris
2- Direction du Développement Durable et de l’Innovation Transverse, Eiffage, 3-7 place de l’Europe 78140 Vélizy-Villacoublay
3- MNHN

Contact : pech@univ-paris1.fr

Eviter-Réduire-Compenser ou comment éco-concevoir un projet d’infrastructure dans le bon ordre

La séquence E-R-C émane de deux lames de fond destinées à se rencontrer, celle de l’écologie scientifique, et plus particulièrement de l’écologie du paysage qui a notamment construit les notions de trames vertes et bleues, et celle du droit de l’environnement qui n’a cessé d’évoluer depuis le dernier quart du XXème siècle.

sont très importants sur le plan écologique parce qu’ils permettent un brassage génétique favorable au maintien des populations menacées par l’isolement et la fragmentation des paysages, dus à l’aménagement du territoire (urbanisation, infrastructures) et à certains usages des sols. Ces corridors sont constitués pour partie de continuums écologiques correspondant parfois à des unités foncières : cours d’eau, bois en lanières, haies des bocages etc. Mais ils peuvent aussi consister en une mosaïque de pastilles paysagères servant d’abris permettant des sauts de dispersion : jardins publics ou privés, îlots boisés etc. disposés en pas japonais.

La consécration de ces principes par les SRCE puis par la Loi sur la Biodiversité de 2016 vise évidemment à fonder la protection des habitats écologiques, qui hébergent la faune et la flore, à lutter contre leur érosion et leur fragmentation mais aussi à rétablir le bon état écologique de l’eau, en droite ligne de ce que préconise la Directive Cadre sur l’Eau.

Un projet d’exploitation d’une carrière, de construction d’une éolienne, d’une route ou encore d’une ILT doit avant tout obtenir des autorisations administratives environnementales, rassemblées désormais sous la procédure de l’autorisation unique délivrée par le Préfet de Région. La demande de l’aménageur repose sur la démonstration technique, financière et juridique de la faisabilité de l’aménagement, incluant bien évidemment la prise en compte de ses impacts sur le foncier et l’environnement. La réglementation environnementale prévoit pour cela une procédure clairement encadrée et bien connue des maitres d’ouvrage.

L’Evaluation des Impacts Environnementaux, EIE, désigne l’ensemble de la démarche destinée à analyser les effets d’un projet sur l’environnement. Cette procédure est réglementaire au moins pour tous les États de l’Union européenne. Elle est appliquée pour toutes les ILT. Cette procédure vise à envisager les impacts environnementaux, les mesurer quantitativement ou qualitativement et à proposer des mesures qui aboutissent soit à éviter soit à réduire soit à compenser les impacts négatifs sur l’environnement. La procédure permet de justifier les choix retenus au regard des enjeux identifiés. Au-delà de son caractère obligatoire, elle sert à éclairer le décideur sur la décision à prendre ainsi qu’à
informer et permettre la participation du public. L’objectif est de prévenir les dommages, ce qui s’avère moins coûteux que de les gérer une fois survenus (Giney et Pech, 2017)\(^9\).

La séquence E-R-C envisage donc trois phases potentielles en fonction des dommages prévisibles à l’environnement et du caractère inévitable des impacts engendrés par l’aménagement :

- **Éviter** consiste à tout mettre en œuvre pour ne pas affecter l’environnement : une zone humide ou un site à enjeu de conservation sont, par exemple, contournés par une infrastructure, comme l’a prévu à maints endroits le tracé de la Ligne à Grande Vitesse Bretagne Pays de Loire, LGV BPL, reliant Le Mans à Rennes, comme cela est illustré sur la Figure 1 (Fourès et Pech, 2015)\(^10\).

\[\text{Figure 1 : carte du tracé de la LGV-Bretagne Pays de Loire avec en bleu foncé le tracé envisagé au moment du projet, en vert les sites à enjeux de biodiversité évités par le tracé et en rouge les sites de compensation (carte réalisée sur SIG par J-M.Fourès)}\]

- **Réduire** est le cas dans lequel les dommages sont temporaires et limités dans le temps et dans l’espace mais aussi dans la capacité de réversibilité et donc de remise en état du milieu naturel. La construction de la LGV BPL a nécessité le détournement temporaire de cours d’eau que l’on a rétabli dans leur tracé une fois que les ouvrages d’art ont été construits pour permettre la transparence hydraulique de l’infrastructure : un des exemples en est fourni sur la photo de la figure 2.

Figure 2 : un cas de réduction temporaire d’impact lors de la construction de la LGV-Bretagne Pays de Loire, la dérivation du ruisseau de la Crochardièrre, affluent de la Sarthe, 72 (Cliché Eiffage)

- Compenser signifie qu’en raison des contraintes supérieures aux enjeux de protection de l’environnement, on détruit un milieu naturel sur le tracé d’une infrastructure mais on effectue la reconstitution d’un milieu naturel équivalent sur un autre site (Figures 1 et 3). La compensation existe juridiquement depuis la Loi du 10 juillet 1976 relative à la protection de la nature et elle est présente dans le droit communautaire notamment dans les directives Natura 2000, les directives Projets et Plans et Programmes et la Directive sur EIE. Elle a été considérablement développée avec la Loi Biodiversité du 8 août 2016.

Figure 3 : La zone de compensation à Vaires-sur-Marne, en Seine-et-Marne, correspondant au tronçon SNCF de la LGV construit sur une zone humide Natura 2000 (Cliché P.Pech)
Ce principe de compensation révèle que l’aménagement du territoire est aussi le fruit d’une volonté d’aboutir à un consensus sociétal entre différents besoins et impératifs. En effet de tels enjeux supérieurs sont liés à des considérations économiques, sociales ou politiques comme la sécurité ou la santé des personnes (éviter de construire une voie à grande vitesse ou une autoroute à proximité de logements ou d’un hôpital), la nécessité de répondre à des besoins impérieux d’un aménagement rendant des services reconnus (desserte d’axes de communication évitant des coûts ou des victimes, à l’image de la voie Centre Européenne Atlantique entre Genève et Bordeaux, et dont le tronçon entre Mâcon et Montluçon est très meurtrier avec près d’un accident mortel par mois).

Lorsqu’un milieu naturel est détruit par un acte de construction répondant à ces contraintes, la compensation consiste à rechercher un espace à proximité pour offrir une contrepartie positive à travers l’aménagement ou la reconstitution d’un milieu naturel au moins équivalent, et sa gestion conservatoire. Comme le dit la Loi, il s’agit de maintenir la biodiversité dans un état équivalent voire meilleur à celui observé avant la réalisation du projet.

Les types de milieux naturels offrant une compensation potentielle sont donc à la fois vastes et limités : une zone humide, une prairie naturelle, une forêt, une lande sableuse, des coteaux rocheux etc. La gamme est fonction des conditions naturelles qu’offrent les espaces potentiels, conditions tributaires de la climatologie, de la nature des sols et de leurs substrats et de l’histoire écologique faite de vicissitudes qui tiennent au moins autant aux variations des conditions climatiques qu’aux actions humaines, comme l’a très bien démontré l'historien J.-M. Moriceau (2002). Toutefois, cette compensation ne peut pas toujours être effectuée dans l’espace de l’emprise de l’infrastructure et cela nécessite alors de prospecter des espaces qui concernent du foncier en dehors de l’emprise.

Compenser, oui mais comment ? Le cas des infrastructures de transport et la mobilisation des ressources foncières

En France, on estime qu’environ 86 000 ha de sols naturels ou agricoles sont artificialisés chaque année. Les autoroutes représentent un linéaire d’un peu plus de 11 800 km dont plus de 9000 km sont privés ; le réseau ferré compte environ 30 000 km de lignes exploitées. A elles seules, toutes les emprises des bords d’autoroutes représentent une superficie de 3400 km², soit l’équivalent des parcs nationaux. Si une grande partie des infrastructures sont anciennes et donc antérieures aux évolutions du droit de l’environnement des 30 dernières années, les plus récentes d’entre elles et certains de leurs réaménagements, comme sur l’autoroute A6 entre Paris et Lyon, ont intégré au cours des dernières années des procédures appliquant la séquence E-R-C, et où la compensation a été pratiquée.

En général, une infrastructure traverse des territoires aux composantes et aux enjeux naturels variés : des espaces agricoles, des bois, des forêts, des zones humides. En outre dans de nombreux cas, les

milieux naturels traversés et donc impactés par la construction puis l’implantation durable de l’ILT sont au moins identifiés comme étant plus ou moins protégés (Bardsley et Pech, 2012)\(^\text{12}\) : espaces naturels sensibles (Pech et al., 2009)\(^\text{13}\), sites concernés par un Arrêté de biotope, Réserve régionale ou nationale, Parc national (très rarement en raison de la nature et de la localisation des espaces correspondant aux Parcs nationaux français), site Natura 2000 (beaucoup plus fréquemment impactés car couvrant généralement des habitats remarquables identifiés des Directives en question mais fortement dispersés à travers le territoire national).

Dès lors, l’EIE évoquée plus haut identifie clairement les dommages aux composantes naturelles : l’eau, les habitats, les espèces floristiques et faunistiques, couverts ou non par toute la gamme des niveaux de protection. On diagnostique alors la nature des perturbations auxquelles ces éléments sont susceptibles d’être soumis, dans leurs fonctionnalités pour les écosystèmes, et tout au long de leur cycle biologique pour les espèces (Fourès et Pech, 2015)\(^\text{14}\). De plus, une étude d’incidence est de rigueur dès qu’un cours d’eau, un site Natura 2000 ou une espèce protégée sont concernés. Dans ce dernier cas, la demande d’autorisation est analysée par le Conseil National de Protection de la Nature, CNPN. Elle s’accompagne d’une description assez précise des mesures et en particulier des mesures compensatoires envisagées par le maître d’ouvrage sur lesquelles le CNPN formule un avis consultatif, mais très attendu. Ensuite, le maître d’ouvrage porte la responsabilité de mettre en œuvre des dispositions en vue d’effectuer la compensation à proximité de l’infrastructure, en faisant son affaire des conséquences foncières.

A priori, le régime de la compensation devrait s’appliquer simplement au sein des emprises foncières de l’infrastructure, en particulier au sein des dépendances vertes (UICN-CILB, 2015)\(^\text{15}\), ce qui faciliterait la mise en œuvre. En réalité, ce domaine foncier concerné par les infrastructures de transport est limité pour permettre d’envisager la compensation. La destruction d’un milieu naturel en relation avec la construction d’une LGV ou d’une autoroute nécessite de prospection des milieux naturels équivalents qui bien souvent ne se trouvent pas dans l’emprise concédée. La compensation nécessite donc, dans la plupart des cas, de prospecter des terrains écologiquement équivalents à celui détruits en allant le prospecter dans le domaine foncier privé extérieur à l’emprise de l’ILT.

Toutefois, la quasi-totalité des emprises liées aux infrastructures, voies ferrées et autoroutières relève du domaine public et par conséquent, tous les espaces de compensation situés en dehors de ces

\(^{15}\) UICN France, CILB, 2015, Corridors d’infrastructures, corridors écologiques ? Etat des lieux et recommandations. 37p
emprises, même s’ils sont nécessaires au parfait achèvement environnemental de l’infrastructure doivent faire l’objet d’une maîtrise foncière ad-hoc, sans recours possible au moyen juridique de l’utilité publique qui permet in fine des expropriations légales. La mobilisation de ressources foncières hors emprises rime donc avec des coûts fonciers importants et des risques juridiques à anticiper (Lémeri et David, 2011)\(^\text{16}\). En effet, en France, la propriété privée est largement dominante avec pratiquement 95% de l’espace rural et 75% de l’espace forestier qui appartiennent à des propriétaires privés, individuels ou en sociétés. Fait exceptionnel pour toutes les grandes démocraties puisque cela n’existe nulle part ailleurs : pour mémoire plus de 50% de la superficie de l’espace rural est possédée par les communes aux Pays Bas et il en va pratiquement de même pour l’Allemagne où les collectivités territoriales représentent aussi une part importante de la propriété foncière. A régime foncier spécial, en France, il faut en conclure que les aménagements sont confrontés à une dure procédure foncière en cas d’E-R-C et surtout d’établissements de mesures compensatoires. Paradoxalement, et même si cela est scientifiquement discuté, les emprises des ILT existantes, en bordure des rails ou des autoroutes, sont autant de friches considérées de plus en plus comme des espaces offrant une biodiversité souvent ordinaire et parfois attirant des espèces remarquables (Penone et al., 2012)\(^\text{17}\). Les gestionnaires d’ILT, à l’image des membres du Club Infrastructures Linéaires et Biodiversité, CILB, effectuent un travail d’inventaire afin de déterminer la qualité écologique de leurs emprises, et développent des protocoles pour enrichir et valoriser la biodiversité, y compris pour des compensations écologiques. Enfin, il faut noter que certains milieux naturels nécessitant des espaces relativement restreints à l’instar des mares peuvent être recréés au sein des emprises d’une infrastructure, moyennant des « sur-largeurs » à intégrer lors de la conception détaillée du projet. C’est ainsi que 68 des 213 mares de compensation de la LGV BPL ont été réalisées au sein des emprises de l’infrastructure à proximité des mares qui allaient être détruites, au profit principalement des amphibiens, moyennant parfois des occupations temporaires chez les propriétaires fonciers avant la réalisation des acquisitions.

La problématique foncière associée à la compensation écologique d’un aménagement, et a fortiori d’une ILT qui consomme et déstructure considérablement la ressource foncière compte tenu des superficies en jeu (souvent supérieure à 100 ha) pose la question des solutions foncières mobilisables à travers le marché croissant de la compensation écologique.

Une offre de compensation en construction

Les pratiques de compensation prennent actuellement des formes variées. Ailleurs qu’en France et notamment aux Etats Unis ou au Canada où le modèle de la compensation date des années 1990, des

opérateurs de compensation privés proposent aux maîtres d’ouvrage des crédits de réserve naturelle correspondant à des opérations de restauration, d’entretien et de protection faisant la part belle aux travaux de génie écologique, hydraulique ou forestier par exemple, comme les reboisements. La mise en protection passe préalablement par l’achat de foncier à réhabiliter en espaces naturels, mais aussi évidemment d’aires naturelles existantes, réserves marines ou continentales, à forts enjeux de préservation et qui sont menacées ou nécessitent un entretien coûteux (Scemama, 2013)18.

En France et au sein de l’Union européenne, la compensation vise à corriger les dommages écologiques également selon un principe d’équivalence devant permettre de maintenir voire si possible de faire progresser les milieux naturels européens. La compensation n’est pas a priori considérée comme un droit à détruire, mais un pis-aller lorsque le potentiel d’action des deux premières étapes de la séquences E-R-C, l’évitement et la réduction, est épuisé et que des impacts résiduels demeurent. Cela implique de réaliser l’opération de compensation au plus près des impacts de l’aménagement. Deux recours sont possibles : soit le maître d’ouvrage se tourne vers un opérateur disposant préalablement des milieux compatibles, disponibles sous forme de crédits de réserve naturelle comme ce qui se pratique aux USA ou en Australie (il s’agit alors de la compensation par l’offre), soit la démarche est construite localement au cas par cas (il s’agit alors de la compensation à la demande). C’est souvent cette dernière option qui a le plus d’influence sur le foncier car c’est la moins anticipée.

Certains opérateurs effectuent une offre de compensation écologique prévisionnelle. Ils anticipent d’éventuels besoins de maîtres d’ouvrages, en prévoyant d’acquérir ou d’envisager des terrains susceptibles de convenir à des projets. A cet effet, l’opérateur est conduit à envisager des études permettant de reconnaître des types d’espaces pouvant convenir à la compensation de milieux naturels impactés par des projets variés. Il constitue des réserves d’actifs naturels.

L’un des précurseurs est la filiale de la Caisse des Dépôts, CDC Biodiversité. En 2010, l’Etat a passé une convention avec cet organisme pour amorcer un mécanisme de réserve d’actifs naturels dans la plaine de la Crau (13). En amont et en aval de cette offre d’actifs naturels, et sur d’autres territoires, CDC Biodiversité propose, en guise de compensation, des milieux naturels offrant un potentiel écologique favorable pour accueillir des mesures compensatoires, dans le respect de l’équivalence écologique ; et joue aussi le rôle d’intermédiaire entre le maître d’ouvrage et les propriétaires. Ainsi CDC Biodiversité a été chargé de trouver, de sécuriser et de maintenir et suivre jusqu’en 2066 1 372 ha de sites compensatoires de l’autoroute A65 entre Langon et Pau pour le compte d’Aliénor, société concessionnaire, très majoritairement sur du foncier situé en dehors de l’emprise de l’ILT.

D’autres opérateurs sont désormais capables de jouer ce rôle. On compte près d’une dizaine de structures de ce type, dont 4 réserves d’actifs naturels. Certaines collectivités territoriales, en particulier les départements, se sont lancées dans une offre de compensation à l’instar du département

des Yvelines. Assisté par le Muséum National d’Histoire Naturelle pour l’évaluation écologique des milieux et par la SAFER des Yvelines pour la prospection foncière, il a réalisé les montages fonciers pour les terrains destinés à l’offre de compensation. De fait, les Yvelines forment un département exceptionnellement riche en espaces naturels et agricoles jouant un rôle important dans les trames verte et bleue régionales et inter-régionales. Il gère notamment 2 800 ha d’espaces naturels sensibles, répartis sur 68 sites. Dans le même temps, ce département subit la pression de l’urbanisation de la région parisienne, entre autres avec l’opération d’intérêt national Seine-Aval, projet d’aménagement structurant ayant pour vocation le développement de nombreux logements et d’activités autour des ILT.

Dans le cas des réserves d’actifs naturels (compensation par l’offre), les espaces de compensation concernent des terrains appartenant à la puissance publique, État ou collectivités territoriales, ou bien acquis, ou encore maîtrisés par voie de convention, par des opérateurs dédiés. L’opérateur investit alors dans l’achat des parcelles aux propriétaires privés et se rembourse en intégrant le prix du foncier dans l’offre de crédit aux aménageurs ayant un besoin de compensation.

Ainsi, sous convention avec l’État, CDC Biodiversité a acquis pour son propre compte en 2008 357 ha de vergers sur le site de Cossure, ancien domaine agricole d’arboriculture fruitière de la commune de Saint-Martin-de-Crau (13), pour y restaurer un milieu steppe méditerranéen disparu. L’objectif est double. D’un point de vue écologique, il s’agit d’expérimenter la renaturation en faveur de la biodiversité, dans la continuité de l’aire protégée voisine. D’un point de vue opérationnel, il s’agit de pourvoir des unités de compensation aux aménageurs en recherche d’espaces de compensation pour des infrastructures localisées à proximité de ce site. CDC Biodiversité propose ainsi des lots au prix de 40 000 à 45 000 euros par hectare environ. Dans le même ordre d’idée, une convention a été signée en juin 2015 entre le département des Yvelines et GRTgaz pour produire un îlot de sénescence de 12,65 ha dans la forêt de Beynes, en compensation du défrichement de 3,5 ha d’un boisement classé.

Dans le cas d’une compensation à la demande, les opérateurs, voire les maîtres d’ouvrage directement, passent des conventions avec des propriétaires privés qui s’engagent à transformer leur parcelle, souvent agricole ou forestière, en parcelle de compensation écologique, avec une contrepartie, éventuellement financière, fonctionnant comme une rente foncière.

Ainsi, lors de la construction de l’autoroute A406 sur 9 km reliant l’A6 à l’A40 au sud de Mâcon, la bretelle a empiété largement sur la plaine alluviale de la Saône. Le maître d’ouvrage APRR a effectué des travaux d’évitement visant à assurer la transparence hydraulique de l’autoroute en réponse à la Loi sur l’eau. A ce titre, les ouvrages d’art dimensionnés pour permettre la crue de la Saône fonctionnent évidemment aussi comme des passages à faune. Pourtant, l’emprise de l’autoroute a détruit des prairies fréquemment inondées qui abritent, entre autres, sur un site Natura 2000, des espèces à enjeux de conservation importants : un oiseau migrateur, le Râle des Genet et deux plantes à fleurs, l’Œnanthe à feuille de Silaüs et la Fritillaire pintade. C’est pourquoi le CNPN, qui avait été saisi pour étudier le
dossier, a préconisé de compenser ces impacts à hauteur de 20 % de la surface de l’emprise autoroutière au sol, soit 22 ha, avec un ratio d’équivalence de 10 pour 1.

Pour trouver les 220 ha de compensation, APRR s’est appuyé sur la Chambre d’agriculture du département de l’Ain, afin de démarcher des agriculteurs volontaires pour accueillir les opérations de compensation. Les agriculteurs et les propriétaires conventionnés se sont engagés à ne pas fertiliser les prairies pour conserver la diversité de la flore, à décaler la fauche plus tard dans l’été pour ne pas perturber la nidification des oiseaux, à effectuer la fauche de façon centrifuge au sein de la parcelle afin de permettre l’envol des poussins, et à limiter la quantité de bétail amené à pâturer. En contrepartie, ils sont assurés d’un revenu moyen de 250 € par ha pendant la durée de la convention établie ensemble. C’est l’ONCFS, l’Office national de la chasse et de la faune sauvage, qui joue le rôle d’organisme de contrôle de l’efficacité des mesures prises sous la houlette de l’aménageur.

Ici, l’impact sur le foncier agricole est clair : les agriculteurs bénéficient d’une garantie de revenus pendant une période beaucoup plus longue que tous les programmes de financement des mesures agro-environnementales, que ce soit à l’échelon européen ou national. En conséquence du fait que le foncier local soit préféré à un foncier « hors sol », les propriétaires fonciers disposent d’une rente de longue durée. Cette rente s’avère assez souvent plus rentable, pour des terrains à faible valeur agronomique ou volontairement exploités en mode extensif d’après le cahier des charges de l’Etat et des chambres d’agriculture, au titre de la Loi sur l’eau ou de la protection des productions labellisées. C’est le cas par exemple des prairies de fauche de l’aire de l’appellation Comté au nord du département du Jura.

Par ailleurs, lors d’une compensation à la demande, le besoin en milieux naturels pourrait se révéler plus important que lors d’un recours à une réserve d’actifs naturels. En effet, au moment de l’instruction administrative d’un dossier de demande, l’absence de constitution de stocks fonciers pour réaliser les mesures compensatoires signifie une absence de garanties de faisabilité de la compensation. Face à cela, un facteur de risque supplémentaire est exigé par les autorités, sur recommandation constante du CNPN, venant gonfler par un coefficient multiplicateur le besoin en foncier. Si les espèces cibles concernées par la compensation sont par ailleurs dans un état de conservation biologique défavorable, un facteur de risque complémentaire est exigé.

A contrario, les unités de biodiversité proposées par une réserve d’actifs naturels, et donc le coût de chacune d’entre elles, intègre la part de risque pour parvenir à une amélioration de la biodiversité, voire un gain net : il n’est plus fait mention de coefficients de compensation complexes car les milieux naturels compensatoires sont connus et maîtrisés, leurs potentialités écologiques également, ce qui constitue des garanties fortes pour les autorités. Au bilan, ce n’est plus le foncier qui représente la variable d’ajustement pour espérer la réussite écologique d’une opération de compensation, mais le coût des unités de compensation proposées par la réserve d’actifs.
Conclusion

Au fond, il semble que l’équation à trois variables que constitue la convergence de la demande de compensation de maîtres d’ouvrage, la gestion des impacts des ILT et le foncier, connaisse actuellement un développement. Certes, comme nous l’avons évoqué à propos du département des Yvelines, la croissance urbaine ne s’arrête pas et malgré les efforts pour limiter le grignotage d’espaces naturels par l’urbanisation, en particulier aux portes des grandes métropoles, l’essor d’importantes zones d’activités très grandes consommatrices d’espaces, avec notamment les plateformes logistiques, a des impacts évidents sur des milieux naturels. La Loi sur la Biodiversité contraint plus fortement à intégrer la séquence E-R-C et à réaliser les compensations écologiques. Bien que les milieux naturels se réduisent autour des villes, il faut bien trouver des espaces offrant des solutions de compensation. Gageons qu’alors les propriétaires de foncier urbain vont sans doute se mettre en capacité de participer à l’offre de réserve naturelle pour répondre à la demande croissante de compensation et limiter ainsi la pression sur le foncier due à la double nécessité de mobiliser du foncier pour réaliser l’aménagement et mettre en œuvre sa compensation au titre de la protection de la biodiversité. Assurément les réserves d’actifs naturels, si elles sont établies en cohérence avec les programmes d’aménagement à l’échelle de chaque territoire ainsi que les trames verte et bleue locales, offriront une alternative soutenable et raisonnable pour poursuivre l’aménagement du territoire, lequel s’opère sur un espace contraint, non-extensible par nature.

Remerciements

Les auteurs remercient le CILB et le programme ITTECOP pour leur soutien dans le cadre du projet de recherche RENATU ainsi que le programme ANR-ECOVILLE, deux programmes dans lesquels s’inscrivent ces recherches.
2-5. L’analyse des perceptions des usagers

Auteur : Mathilde Riboulot-Chetrit

2-5-1. Objectifs

Dans le cadre d’un post-doctorat, la mission a été définie à partir de trois questions formulées dans le cadre du projet RENATU :

-> Dans quelle mesure, l'implantation d'une Infrastructure Linéaire de Transport (ILT), telle que le tramway, peut permettre de « renaturer » un milieu urbain dense (la Métropole du Grand Paris) ?

-> Dans quelle mesure la présence d'une ILT pourrait intégrer des îlots de nature, des paysages nouveaux, capables d'accueillir de la diversité biologique offrant des fonctions multiples ?

-> En quoi la renaturation peut constituer dans les dialogues participatifs une contribution à la compensation favorable, à l'acceptation et au bien vivre en ville ?

L'objectif général de ce post-doctorat est donc de comprendre et de favoriser la connaissance de la nature, des perceptions et des aspirations des usagers, riverains et acteurs, en vue d'améliorer les dialogues de concertation sur les questions de renaturation d'un milieu urbain dense.

Cela consiste dans un premier temps à réaliser une enquête (observation, questionnaire et entretiens semi-directifs) auprès des usagers du tramway et des riverains afin de saisir leurs perceptions de la nature, leurs usages potentiels, leurs intérêts et l'appréciation qu'ils en ont lorsqu'ils empruntent ce type de transport ou vivent à proximité. Dans un deuxième temps, une fois les données issues de cette enquête traitées, il s'agit de s'entretenir avec les décideurs et les gestionnaires de la RATP afin de leur faire part des principaux résultats de notre enquête pour qu'ils puissent notamment les prendre en compte dans de futurs projets (conditions d'acceptation, d'amélioration, etc.).

2-5-2. Dispositif méthodologique

2.5-2-1. Le tramway T2, un terrain d'étude complet diversifié

Après avoir prospecté plusieurs terrains d'étude potentiels, c'est le tramway T2 qui a été choisi pour mener notre recherche. Cette ligne de tramway parcourt 12 communes situées à l'ouest de Paris : un des deux terminus se situe au sud-ouest de Paris (station « Porte de Versailles »), et l'autre à Bezons dans le Val d'Oise (Carte 1). Cette ligne a la particularité de traverser des paysages urbains, végétalisés ou non, très différents. On peut en effet identifier trois parties comme les photos sur la carte 1 l'illustrent. La première, assez minérale, parcourt un paysage urbain assez dense et se situe au sud de la ligne, entre les arrêts « Porte de Versailles » et « Les Moulineaux ». La deuxième partie, entre les stations « Meudon/Seine » et « Belvédère » est beaucoup plus végétalisée, abritant une diversité écologique importante, comme le travail de Flavia Lifchitz l'a montré, et traverse de véritables
paysages dits « de nature » : jardins privés en contrebas, talus et murs végétalisés, Seine à proximité, jardins partagés le long du tramway ou à certains arrêts, etc. Quant à la troisième partie, localisée entre « la Défense » et « Pont de Bezons », elle se caractérise par un paysage urbain plus dense, beaucoup moins végétalisé, excepté une bande de pelouse située sous le tramway. En outre, d'après nos observations, le tramway T2 est emprunté par une population dont les caractéristiques socioéconomiques sont assez variées selon les parties de la ligne. Cette hétérogénéité, tant paysagère et environnementale que d'un point de vue socioéconomique, présente l'avantage de pouvoir tester différentes variables (spatiales comme sociales) afin de saisir les interactions éventuelles entre les usagers du T2 ou les riverains et la nature située le long de cette infrastructure de transport.

2-5-2-2. Elaborer un questionnaire pour mieux comprendre l'appréciation et l'intérêt éventuels entre les usagers du tramway et la nature liée à ce mode de déplacement

Au vu de notre sujet et des objectifs de recherche, le questionnaire apparaît comme une technique d'enquête appropriée. Le questionnaire constitue un instrument d'observation efficace et pertinent qui permet d'éclairer des pratiques, des comportements et des discours. Cette méthode peut également contenir, dans certains cas, des questions d'opinion ou de connaissance. Il est par ailleurs bien adapté aux usagers du tramway, population dont on veut un échantillon assez large et qu’il est difficile de retenir trop longtemps. Utilisé comme instrument de mesure standardisé (il place tous les sujets dans la
même situation), il permet ainsi des comparaisons entre groupes de répondants. C'est donc une méthode principalement quantitative qui fonde notre démarche.

En amont de la construction du questionnaire, nous avons effectué un travail à la fois bibliographique et d'observation sur la ligne de ce tramway, qui nous a permis de nous familiariser avec les pratiques à analyser. Ces différentes étapes ont permis de retravailler et préciser progressivement le questionnement théorique lié à cette recherche.

Les objectifs du questionnaire consistent à mieux appréhender les perceptions, les usages, les intérêts et les appréciations de la nature par les usagers et les riverains du tramway T2 implanté en urbain dense. Ceci, afin de répondre aux questions suivantes : Les usagers et riverains apprécient-ils davantage les ILT lorsque ces derniers s'accompagnent et/ou sont créateurs de nature ? La végétation créée à partir des ILT participe-t-elle voire favorise-t-elle un bien-être des usagers et des riverains ? Qu'est-ce qui fait « biodiversité » pour les usagers et riverains de ce transport ?

Le contenu, l'ordre et le libellé des questions posées dans le questionnaire final sont notamment issus de vérifications. Une première version du questionnaire a en effet été soumise à des tests permettant de vérifier la conception des questions, l'adaptation des modalités et les oublis éventuels. Ces questionnaires ont été auto-administrés par environ 20 personnes en mars 2017 dans les mêmes conditions que la passation de l'enquête finale. L'observation des participants durant ces tests et les discussions post tests ont permis d'améliorer la dernière version du questionnaire.

L'architecture du questionnaire est élaborée en cinq parties qui ont pour but de guider la personne interrogée et de rendre le moment de l'administration plus ludique et dynamique : « pour commencer », « usages du tram », « la nature et le tramway », « quelles améliorations possibles » et « vous ».

- La **première partie** a deux objectifs : 1) mettre en place une question "brise-glace" afin de mettre à l'aise l'enquêté comme il est coutume de faire dans les enquêtes quantitatives ; 2) saisir les perceptions que les riverains, potentiellement usagers du tramway, ont de ce moyen de transport afin de voir notamment si la végétation qui accompagne ce mode de déplacement participe d'une appréciation positive dans le tissu urbain dense.

- La **deuxième partie** a également deux objectifs : 1) saisir les raisons pour lesquelles les usagers empruntent ce type de transport (travail ou loisirs par exemple) et connaître les fréquences d'utilisation de ce mode de déplacement ; 2) voir si spontanément l'observation des paysages et/ou de la nature environnante contribuent à l'appréciation éventuelle de ce moyen de transport. On demande également aux enquêtés de renseigner leurs stations habituelles de départ et d'arrivée. La phase de terrain a permis d'identifier une partie du T2 (entre « Meudon/Seine » et « Belvédère ») plus végétalisée que les autres tronçons de cette ligne. On cherche alors à savoir si les usagers de cette portion du tram se distinguent des autres individus interrogés dans leurs réponses.
- La **troisième partie** vise à comprendre les relations éventuelles qui existent entre l'usager et la nature à proximité du tramway, que ce soit lorsque l'enquêté attend le tramway (aux arrêts) ou lorsqu'il est à l'intérieur. On cherche aussi à identifier ce que l'enquêté considère comme étant de la nature (mobilier vert ? attention aux éléments vivants de cette nature ?) et s'il apprécie cette nature située à proximité du tramway. Les personnes qui définissent la nature en évoquant un fonctionnement biologique ou écologique acceptent-ils davantage que les autres enquêtés la nature créée à partir du tramway ? Cette partie a également pour but d'interroger les services écosystémiques dont peut bénéficier l'usager grâce à cette nature.

- La **quatrième partie** du questionnaire est constituée de questions dites de projection afin de voir si, à partir de couples de photographies, une demande de nature émane de l'usager ou du riverain lorsqu'il évoque les aménagements futurs relatifs aux tramways et de saisir quel type de nature il désire éventuellement.

- La **cinquième partie** concerne, conformément au protocole d'enquête en sciences sociales, les caractéristiques sociodémographiques voire économiques de l'enquêté. Cette partie vise en effet à approcher les déterminants sociaux liés aux rapports qu'entretiennent les usagers avec la nature lorsqu'ils empruntent ou attendent ce mode de transport. Le contact avec la nature pouvant influencer la relation à la biodiversité d'après plusieurs articles scientifiques, nous nous sommes intéressés à différentes activités des usagers dans l'objectif de voir si certaines d'entre elles étaient relatives à la nature, dans un souci plus général de savoir quel enquêté a un « profil nature ». La construction de cette variable « profil nature » attribuée aux enquêtés s'appuie à la fois sur la pratique d'un « loisir nature », l'appartenance à une « association ou fédération nature » et la lecture de « magazine nature ». On cherche notamment à saisir quelle définition ces individus caractérisés par un profil nature donnent de la nature.

Le questionnaire comporte au total 49 questions parmi lesquelles une majorité est fermée ou semi-ouverte (comprenant la modalité de réponse « autre »). Une place est néanmoins accordée aux questions ouvertes. L'objectif de ce dernier type de question est double : d'une part compléter les réponses aux questions fermées, d'autre part rompre avec une certaine monotonie lors de l'administration du questionnaire. La nature de ces modalités de réponse, transformées ensuite en variables à l'origine des traitements statistiques, est de plusieurs sortes : quantitative (discrète ou continue), qualitative ou textuelle.
2-5-2-3. Passation de l'enquête et constitution du corpus

Nous nous sommes rendus plusieurs fois sur le terrain d'étude pour distribuer les questionnaires entre mai et août 2017. Afin d'obtenir un échantillon le plus représentatif de la population qui emprunte ce tramway, nous avons enquêté en variant les heures (entre 8h et 21h) et les jours de la semaine (weekend compris), et ce, sur l'ensemble de la ligne. Le protocole d'enquête a toujours été le même. Après s'être brièvement présenté et avoir expliqué en quelques mots l'objectif de notre travail (tout en restant volontairement général afin de ne pas influencer les réponses obtenues), nous demandions à chaque personne si elle souhaitait participer à notre étude (en précisant le temps nécessaire pour cela). Si cette personne acceptait, nous lui donnions alors un questionnaire et un stylo et la laissions seule pour y répondre. Généralement, nous distribuions les questionnaires à un arrêt, ce qui permettait aux enquêtés d'y répondre en attendant le tramway (entre 3 et 7 minutes d'attente environ), puis montions avec eux dans le tramway afin de leur laisser le temps de finir de remplir le questionnaire et réceptionnions le tout à l'intérieur des rames.

Souvent, seule une personne sur deux, voire trois, acceptait de participer à notre enquête. Toutefois, le taux de refus a été plus important lorsque nous étions au nord de la ligne (entre « la Défense » et « Pont de Bezons ») où il était plus difficile de convaincre les usagers de cette ligne et/ou les riverains de répondre au questionnaire (seule une personne sur six ou sept y concédait). Cela peut notamment s'expliquer par le fait qu'une plus grande proportion des personnes abordées sur cette partie de la ligne ne maîtriseraient pas la compréhension et/ou la lecture et/ou l'écriture de la langue française. Même si nous leur proposions de leur lire les questions et de noter leurs réponses, seules deux personnes ont accepté de participer.

La quasi-totalité des questionnaires saisis a donc été au préalable auto-administrée par les habitants. Ainsi, en décidant de donner un questionnaire à quelques usagers du T2, l'échantillon de cette étude relève d'une construction personnelle. Ce choix raisonné signifie que l'on a sélectionné des individus « moyens » que l'on déclare « représentatifs » d'un groupe, en l'occurrence dans ce travail, des personnes qui empruntent cette ligne de transport. L'échantillon réuni n'a aucune vocation à être représentatif d'un point de vue statistique du fait notamment que l'on ne connaisse pas les caractéristiques de la population parente. Ainsi, les résultats et commentaires de cette recherche n'ont de sens que pour cet échantillon et n'ont pas vocation à être élargis à l'ensemble d'une population.

Parmi les 220 questionnaires distribués, 152 étaient remplis dans leur intégralité et ont pu être saisis et codés dans la base de données afin d'être exploités. Compte tenu des critères retenus (moyens disponibles, temps imparti à l’enquête, coût de réalisation, etc.) on estime que cet échantillon est tout à fait acceptable pour notre recherche et ce d'autant plus que dans les disciplines relatives aux sciences sociales la taille des échantillons varie généralement entre 100 et 1 000 enquêtés.
Par ailleurs, à l'heure actuelle, une dizaine d'entretiens semi-directifs, d'une durée d'environ 30 minutes chacun, a été réalisée. Six ont eu lieu avec des enquêtés à la suite de l'administration d'un questionnaire afin d'approfondir certaines de leurs réponses. Un entretien a également été réalisé en juin 2017 avec une habitante de Suresnes, qui s'occupe d'un jardin partagé à la station « Belvédère » et trois ont été effectués avec des riverains qui n'empruntent jamais ce type de transport.

2-5-2-4. Outils variés pour l'analyse des données

Une fois les questionnaires saisis et codés, il est nécessaire de mobiliser différents outils afin d'analyser les données et d'interpréter les résultats. Le traitement de ce corpus (toujours en cours actuellement) relève en premier lieu d'une méthode, les statistiques. Cette technique de traitement est effectuée sous les logiciels R et Excel, aussi bien sur des séries de chiffres que sur des données qualitatives. L'analyse des réponses au questionnaire est en effet liée à la nature des variables. Les calculs réalisés sont essentiellement du registre des analyses descriptives (analyses univariées, bivariées et multidimensionnelles) et des tests d'hypothèses pour les données quantitatives. Les réponses aux questions ouvertes, tout comme les entretiens réalisés, font quant à eux l'objet d'une étude lexicométrique. En second lieu, la réalisation de cartes permet à la fois de traiter l'information géographique grâce au logiciel ArcGIS et d'illustrer les données géographiques à l'aide du logiciel de dessin Adobe Illustrator.

2-5-3. Présentation de l'échantillon : des profils socioéconomiques variés selon la partie du tramway empruntée

L'échantillon sur lequel porte ce travail est donc composé de 152 personnes. On note une surreprésentation des femmes (61 %) par rapport aux hommes (39 %). Il existe également de légères différences concernant les âges qui caractérisent les individus interrogés : un quart a entre 20 et 29 ans, 14 % entre 30 et 39 ans, les personnes âgées entre 40 et 49 ans tout comme celles qui ont entre 50 et 59 ans représentent environ 21 % de l'échantillon, et enfin, 17 % ont au minimum 60 ans. La moitié des personnes interrogées vit en famille, 30 % sont en couples et 20 % habitent seules. Des disparités sont à relever concernant la CSP d'appartenance et le niveau de diplôme (Fig. 1 et 2). Quant aux loisirs, on note qu'une proportion non négligeable de l'échantillon manifeste un lien avec la nature dans le cadre de leurs passe-temps puisque plus d'un tiers des répondant pratique un sport de plein air lié à la nature (comme la randonnée par exemple), 21 % jardinent et 15 % répondent « découvrir la nature ». Cet attrait pour la nature se retrouve également dans l'appartenance à une « association nature » (telle que la LPO ou la FFRP) et/ou la lecture de « magazine nature » (Terre Sauvage,
Rustica, etc.) pour respectivement 12 % et 18 % des enquêtés. Enfin, parmi les 70 individus qui répondent vivre avec des enfants, près de neuf sur dix considèrent qu'il est important de les sensibiliser à la nature (les justifications apportées par ces enquêtés sont en cours de traitement).

Certaines observations faites durant la phase de terrain, confirmées par le traitement de nos données, révèlent que les caractéristiques socioéconomiques des individus diffèrent selon les portions de la ligne sur laquelle les individus ont été interrogés. Les enquêtés qui prennent le tramway à Porte de Versailles et descendent à l'arrêt « Henri Farman » ou « La Défense » par exemple, sont généralement de jeunes actifs (entre 20 et 49 ans), diplômés de cinq années d'étude après le baccalauréat, appartenant à la CSP « CPIS », vivant en couple ou bien en famille et étant, pour une proportion non négligeable d'entre eux, intéressés par des loisirs liés à la nature. A l'inverse, l'échantillon de population interrogée au nord de la ligne et qui descend fréquemment à « La Défense » ou bien à « Puteaux » est davantage caractérisé par des personnes étant soit très jeunes (20-29 ans) soit plus âgées (60 ans et plus), dont le niveau de diplôme est moins élevé (pas de diplôme, BEP, CAP-BEP, baccalauréat), qui appartiennent plus souvent à la CSP « employé » ou « retraité » et pratiquent des loisirs tels que le « sport en salle » et/ou un « sport en plein air non lié à la nature ».

2-5-4. Premiers résultats

Le traitement des données étant en cours au moment de la rédaction de cette synthèse, les résultats qui suivent sont issus de simples statistiques descriptives, qui donnent toutefois un premier aperçu des grandes tendances qui se dégagent de cette étude. Un traitement statistique plus approfondi, tel que les analyses factorielles qui sont actuellement en train d'être réalisées par exemple, ainsi qu'une mise en perspective avec les résultats issus des entretiens, permettront de répondre plus précisément aux questions posées initialement dans le cadre de ce post-doctorat.

Les deux premières parties du questionnaire avaient notamment pour objectif comme dit précédemment de mieux cibler les représentations que les usagers ont du tramway et leurs usages vis-à-vis de ce mode de transport.
Les premières analyses montrent que plus de la moitié des répondants vit à proximité de cette infrastructure. Parmi eux, 97% déclarent qu’habiter près du T2 est positif. De façon attendue, la première justification donnée est qu’il facilite les déplacements. Les enquêtés accordent aussi une importance particulière à des raisons environnementales, puisque la moitié des individus évoque le fait que ce mode de transport ne pollue pas et 30% affirme qu’il « offre un peu de nature ».

En outre, sur 152 enquêtés, 125 prennent ce tramway (de façon régulière ou non). Parmi eux, près de neuf enquêtés sur dix déclarent apprécier prendre le T2. Si les deux raisons principales sont liées à sa rapidité et à sa ponctualité, le fait que c'est un mode de transport extérieur et qu’il permette d’observer le paysage sont des réponses choisies respectivement par 58% et 42% des enquêtés. Cela montre bien qu’une partie des usagers de ce tramway accorde une importance particulière aux paysages parcourus durant leur trajet. Concernant la fréquence d’usage, plus de six enquêtés sur dix empruntent le T2 de façon très régulière (entre trois et sept fois par semaine), principalement pour se rendre à leur travail. Près d'un quart prend également ce tramway pour aller à un endroit où ils pratiquent un loisir.

Du fait de notre protocole d'enquête, les personnes interrogées montent ou descendent à différents arrêts situés sur l'ensemble de la ligne. Toutefois, on observe que certains arrêts sont des stations pour lesquelles le nombre d’usagers est plus important : « Suzanne Lenglen » (zone commerciale et de loisirs), « Henri Farman » (entreprises), « Parc de St Cloud » (espace de loisirs), La Défense (activités économiques) par exemple. Les temps de trajet moyens sont entre 10 et 20 minutes pour 44% des enquêtés, moins de 10 minutes pour un quart d'entre eux et plus de 20 minutes pour les autres.

Parmi l'ensemble des personnes interrogées, plus d'un quart déclare qu'il y a une partie de leur trajet qu'elles apprécient particulièrement. Dans huit cas sur dix, il s'agit de la partie située entre « Meudon/Seine » et « Belvédère ». Les raisons données font presque toutes écho aux services écosystémiques liés à la nature présente le long de la voie. Si les réponses font actuellement toujours l'objet d'une analyse textuelle approfondie, on peut citer ces quelques exemples : « voir la Seine et toute cette végétation m'apaise », « beaux paysages laissés un peu à l'état sauvage qui dépaysent », « c'est très joli et ça permet d'apprécier la ville ».

Contrairement à ce que nous avions supposé initialement, les raisons pour lesquelles les individus prennent ce moyen de déplacement ou le temps moyen de ce trajet n'influencent pas leur comportement durant son trajet. Sept répondants sur dix déclarent regarder par la fenêtre pendant leur trajet. Cela renforce l’importance accordée par les usagers à l’observation des paysages évoquée précédemment. Cela n'empêche pas que les autres modalités de réponse aient également été choisies par les enquêtés : plus de la moitié utilise son téléphone, 37% écoutent de la musique, 34% lisent, etc.

La troisième partie du questionnaire visait à saisir les relations éventuelles qui existent entre l'usager et la nature à proximité du tramway. Les définitions liées à la nature n'ont pas encore été traitées de façon approfondie. Les premières analyses confirment cependant ce que nous avons déjà constaté lors de recherches précédentes. Les définitions sont plurielles et il existe une certaine difficulté à définir ce
qu'est la nature. Généralement réduite à la végétation voire à du mobilier vert, très peu de personnes la définissent en évoquant sa partie vivante et les processus biologiques ou écologiques qui y sont liés. Par ailleurs, l'appréciation de la place de la nature diffère selon s'il s'agit de la nature à Paris, de celle située le long du tram ou bien de l'arrêt auquel l'enquêté attend ce tram (Fig. 3). De façon globale, les réponses laissent supposer que pour une partie importante des enquêtés, cette infrastructure linéaire de transport permet d'avoir de la nature en ville. On relève toutefois que les personnes qui ont répondu qu'il y avait de la nature le long du tram et à l'arrêt auquel elles l'attendent sont les usagers enquêtés entre les stations « Meudon/Seine » et « Belvédère », c'est-à-dire sur la partie la plus végétalisée de la ligne. A l'inverse, les trois-quarts des personnes interrogées au nord de la Défense sont surreprésentés parmi les individus qui estiment qu'il y a peu de nature le long du tram, voire pas du tout. Il en est de même concernant ces modalités de réponses liées aux arrêts du tramway. Cela signifie que pour la plupart des usagers du tram sur cette partie, la bande d'herbe située sur les voies n'est pas assimilée à de la nature (malgré les définitions données de ce terme). D'après les répondants, le long du tramway, la nature est essentiellement représentée par des arbres, des arbustes, de la pelouse et dans une moindre mesure par des haies et des fleurs. Aux arrêts, les enquêtés répondent voir les mêmes éléments de nature auxquels s'ajoutent, pour 41 % des individus questionnés, l'observation d'oiseaux (seule évocation de la faune). Cette nature est considérée comme entretenu pour 63 % d'entre eux, discrète pour 45 % et peu variée pour 30 %. L'ensemble de ces réponses reste naturellement à approfondir, notamment à partir des profils des enquêtés et de leur trajet habituel sur cette ligne.

De plus, parmi les 100 personnes qui considèrent qu'il y a de la nature le long du tram et/ou à certains arrêts, 89 déclarent apprécier cette nature. Ici aussi, les raisons données sont en cours de traitement mais les premières analyses montrent que les enquêtés rattachent cela aux services écosystémiques, et plus particulièrement au bien-être que cela peut leur apporter : « met de la couleur dans le quotidien grisâtre de la ville », « apaisement, variété des paysages, empreinte des saisons », « ça change du béton, ça fait du bien, même s'il en faudrait plus ! », « rend le trajet beaucoup plus agréable », etc. Dans le même sens, plus de la moitié des répondants estiment que les jardins partagés installés le long du tramway et à l'arrêt Belvédère (qu'ils les aient vus réellement ou bien sur la photo intégrée dans le questionnaire) sont jolis et rendent plus agréables l'attente du tramway. Près de 6 répondants sur 10 à cette question estiment aussi que ces jardins font partie de la nature et, dans une moindre mesure (près de 5 sur dix), qu'ils favorisent la biodiversité. Par ailleurs, près de la moitié des répondants pensent que cette nature située à proximité du tramway peut contribuer à réduire la pollution en ville.

Pour conclure cette partie, les personnes qui ont répondu qu'il y avait de la nature le long du tramway et/ou à l'arrêt auquel ils l'attendent, devaient choisir un schéma illustrant le mieux selon eux la relation entre cette ILT et la nature. Comme le montre la figure 4, plus de 50 % des répondants ont choisi le schéma B : le tramway et la nature sont côté à côté mais pas interconnectés à l'inverse de 32 % des individus qui ont choisi le schéma C. Notons également que pour un quart des personnes qui ont
répondu à cette question, si nature il y a à proximité du tramway, les liens entre les deux sont tout de même assez distendus.

Enfin, la dernière partie du questionnaire a été élaborée dans une démarche de prospection. Elle s'adresse aussi bien aux riverains qui n'empruntent pas ce mode de déplacement qu'aux usagers du T2 afin de voir si une demande de nature ressort lorsqu'on évoque avec eux les aménagements futurs relatifs aux tramways. Pour cette partie également, l'analyse des réponses des enquêtés permettant de justifier leurs choix n'est pas terminée. Toutefois, de grandes tendances se dessinent déjà (qu'il faudra tout de même approfondir et vérifier statistiquement). Tout d'abord, de façon générale, on constate que systématiquement, dans chaque couple de photos, c'est le cliché comprenant de la végétation qui est choisi par une plus grande proportion d'enquêtés (Fig. 5). Le seul couple de photos pour lequel les avis sont moins nets est composé des photos E et F. En effet, près de 40 % des répondants n'ont pas de préférence entre les deux photos proposées, expliquant qu'ils ne voient pas réellement de différence entre les deux. Seule une vingtaine de personnes interrogées justifie en effet leur choix de la photo E en évoquant les couleurs apportées grâce aux fleurs, faisant alors référence pour certaines d'entre elles à la diversité de la végétation. Les analyses textuelles et statistiques à suivre permettront de cibler davantage le profil des personnes qui sont plus attentives à cette diversité. De la même façon, les traitements à venir nous permettront de mieux comprendre les résultats liés au couple de photos 5 et de voir plus particulièrement quels sont les profils des personnes qui expliquent qu'elles n'ont pas de

Fig. 3 : Présence éventuelle de nature à Paris ou à proximité du T2

<table>
<thead>
<tr>
<th></th>
<th>Paris</th>
<th>Long du tram</th>
<th>Arrêt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pas du tout</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beaucoup</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4 Répartition des enquêtés selon le schéma qui illustre le mieux pour eux la relation entre le tramway et la nature

<table>
<thead>
<tr>
<th>Schéma A</th>
<th>Schéma B</th>
<th>Schéma C</th>
<th>Schéma D</th>
</tr>
</thead>
<tbody>
<tr>
<td>T N</td>
<td>T N</td>
<td>T N</td>
<td>T N</td>
</tr>
<tr>
<td>25 %</td>
<td>40 %</td>
<td>32 %</td>
<td>2 %</td>
</tr>
</tbody>
</table>
préférence entre ces photos car toutes deux représentent la nature, à la différence des individus qui expliquent préférer le côté « ordonné » de la nature sur la photo I plutôt que la nature « sauvage voire sale » représentée sur la photo J.

2-5-5. Premières conclusions

Ainsi, ces premiers résultats montrent bien que le tramway peut s'accompagner d'espaces de nature et constitue de ce fait un moyen de « renaturer » un milieu urbain dense. Ces îlots de nature, souvent porteurs d'une biodiversité importante, sont remarqués et estimés par les usagers de ce mode de transport. En effet, la majorité des personnes interrogées explique apprécier cette nature, ou plus précisément les éléments qui la caractérisent, pour les services écosystémiques (principalement culturels et de régulation ici) qu'ils peuvent leur apporter. Ces individus n'hésitent pas à associer cette nature au bien-être qu'elle leur procure et au « mieux vivre la ville » qui y est lié. Enfin, pour une proportion importante des répondants, la nature qui accompagne le tramway permet de mieux accepter ce type d'infrastructure et de rendre notamment l'attente du T2 plus agréable. Les analyses à venir permettront d'approfondir ces résultats et d'affiner les profils des enquêtés qui y sont liés.

A l'issue des traitements des données, un article scientifique sera réalisé, associant les données écologiques recueillies lors du stage de Flavia Lifchitz et les données sociales récoltées au cours de ce post-doctorat. Il s'agira effectivement de mettre en relation la biodiversité « réelle » évaluée à l'aide de l'indicateur RENATU aux représentations éventuelles que peuvent en avoir les usagers du T2.
Fig. 5 Arrêts auxquels les enquêtés préféraient éventuellement attendre le tramway

Couple 1

Photo A : 81 % Pas de préférence : 8 % Photo B : 11 %

Couple 2

Photo C : 2 % Pas de préférence : 22 % Photo D : 76 %

Couple 3

Photo E : 55 % Pas de préférence : 39 % Photo F : 6 %

Couple 4

Photo G : 72 % Pas de préférence : 13 % Photo H : 15 %

Couple 5

Photo I : 60 % Pas de préférence : 22 % Photo J : 18 %
2-6. Infrastructures de transports : des vecteurs de biodiversité en milieu urbain ?

Article paru dans *Les Cahiers Palladio* Auteurs : Romain Fillon, Nathalie Frascaria-Lacoste, Pierre Pech

INFRASTRUCTURES DE TRANSPORTS : DES VECTEURS DE BIODIVERSITÉ EN MILIEU URBAIN ?

par Romain Fillon1 avec Nathalie Frascaria-Lacoste et Pierre Pech
Laboratoire LACYS, Université Paris 1 Panthéion-Sorbonne ; Laboratoire Paris-Sud, Orsay.

Dans quelles conditions, sous quelles processus et selon quelles méthodes, les espaces du tissu urbain traversés par les infrastructures de transport peuvent-ils faire l’objet d’une renaturation par des paysages contributifs d’une biodiversité urbaine ?

La renaturation des infrastructures de transport en milieu urbain, capables d’accueillir la diversité biologique, offre des fonctions renaturantes, à la fois sur le plan des continuités écologiques et sur le plan de l’innovation environnementale. Elle contribue aux services rendus à la ville et aux populations riveraines des territoires enjeuns, énergétiques, climatiques, et ainsi dans les logiques des continuités des schémas institutionnels et de la transition énergétique.

PÉRIMÈTRE DES TRAVAUX

Les infrastructures linéaires de transport terrestre correspondent à l’ensemble des installations fixes et des éléments mobiles à l’exploitation et au fonctionnement des systèmes de transport. Le plus souvent organisées en réseau, grâce à la présence de leurs axes de connectivité (parties canaux de navigation, routes, autoroutes, ou encore chemins), elles constituent des supports à la circulation de matières premières, des marchandises, ou de voyageurs grâce à leur utilisation de différents types de plateformes ou de véhicules. Les infrastructures écologiques, dans le cadre de cet article, intègrent le réseau ferroviaire, le réseau des voies navigables humaines et courant d’au, le réseau de routes et autoroutes ainsi que les voies des lignes de transport et de distribution d’électricité et de gaz.

Les infrastructures linéaires engendrent différents types d’effets sur les habitats riverains, la faune et la flore, selon différents processus qui vont s’accompagner dans l’espace et dans le temps. En ville, ces infrastructures font l’objet d’interrogations concernant leurs effets positifs sur la biodiversité urbaine, et cet article se propose, pour chacune des infrastructures, de faire l’état des lieux, des incertitudes rencontrées, mais aussi des réussites. Les exercices de classification qui est rare et d’une grande utilité, pour se faire dans le temps ; l’état d’emprise de l’émergence des recherches développées par des paysages de nature en ville, sur ce lieu, et la mise de la ville sur les trames écologiques, ainsi que sur les actions de la biodiversité urbaine.

Il importe donc de déterminer la contribution des réseaux de transports à l’amélioration de la biodiversité urbaine, car ce sujet d’étude suscite un intérêt croissant dans l’objectif d’intégration de ces infrastructures dans

1. Romain Fillon est doctorant en géographie au département de Biogéosciences de l’Ecole normale supérieure et à l’Université Paris 1 Panthéion-Sorbonne.
2. Ce travail s’inscrit dans le cadre du projet de recherche ANR sous le programme ISTECOCO-01 dirigé par le groupe d’investigation Durines et écosystèmes.
le paysage et aborde une problématique émergente et innovante au regard des enjeux de conservation des espaces de nature en ville et écologie urbaine.

Des effets négatifs... Pour une majorité d’automne, le sujet fait consensus et, au regard d’une littérature scientifiquement largement documentée, les infrastructures de transport terrestre sont majoritairement abordées en tant que corridors ayant des effets négatifs sur la nature. Des impacts écologiques, négatifs directs ou indirects, ont ainsi été constatés sur de rares contreforts frontaliers concourant à la fragmentation et au rétrécissement des espèces par des effets de barrage. Un appauvrissement de la biodiversité est censé se refléter à mesure de la densification des réseaux d’infrastructures de transport dans le monde, conséquence du développement des réseaux de transport et de l’urbanisation urbaine en constante augmentation.

...à un rôle positif. Principalement étudiées pour leurs effets négatifs, les infrastructures linéaires de transport terrestre tendent, depuis quelques années, à être mieux considérées, en raison du rôle positif qu’elles peuvent jouer sur l’essor de la biodiversité et/ou le maintien des espaces de nature préservés dans des milieux forestiers et urbains. En effet, l’intérêt grandissant pour la thématique de la nature en ville a permis de montrer que l’environnement urbain est de mieux en mieux reconnu comme étant paradoxalement plus riche en espèces que les milieux ruraux. Ces espaces urbains préservés sont ceux dans lesquels, par exemple, une incontestable aversion se manifeste au point de vue de la richesse spécifique que de la variété des supports d’accueil, comme cela a pu être prouvé pour le département des Hauts-de-Seine.

Masi, il s’agit également de ces nouveaux écosystèmes appelés aussi « écosystèmes d’émergence » ou « non analogues » pour lesquels l’environnement urbain, à l’intérieur duquel s’inscrivent les réseaux linéaires de transport, connu de nouveaux questionnements. Notamment, celui qui consiste à se demander dans quelle mesure les infrastructures linéaires de transports peuvent contribuer à des enjeux de biodiversité conduisant à favoriser l’apparition de milieux écologiquement intéressants.

En effet, les infrastructures de transport ne doivent plus être uniquement perçues comme des zones de conflits pour la nature en ville, mais également comme des supports potentiels de biodiversité dans lesquels même les petits îlots de nature peuvent être réalisés sous le nom de « dépendances vertes » ou des contreforts écologiques dans le tissu urbain. Ces lignes pourraient jouer un rôle fondamental dans la construction des trames vertes intra-urbaines et dans la conservation d’une biodiversité urbaine jouant de multiples rôles.

Des corridors écologiques... Il est donc et déjà reconnu que les lignes de transport comportent par exemple l’avantage de concentrer et d’optimiser les déplacements humains qui affecteront le plus des grandes surfaces naturelles, notamment dans les axes géographiques aux réseaux de transport peu développés. Certains scientifiques démontrent aussi que les accrochements de routes ou de voies ferrées sont mieux estimés pour leur rôle de refuge ou d’habitat, pour les papillons et les chiroptères, les abeilles et certaines espèces végétales offrant une opportunité favorisant leur implantation dans des paysages fortement anthropisés. Une étude récente confirme le potentiel de ces milieux de voie en alimentant, suite à l’analyse de quatre vingt-deux publications réalisées sur une période de trente ans, de 1979 à 2014, les effets positifs des LTT sur les écosystèmes.

Cette synthèse souligne que les accrochements routiers et les pièces de galères peuvent constituer des habitats sources de biodiversité, que les lignes électriques peuvent offrir des paroisses utiles pour le gué pour les espèces en période de chasse, et que les galères sont à même de représenter ces structures efficaces pour l’installation des rids, facilitant en quelque sorte le processus de reproduction. Certaines constructions associées aux réseaux de transport semblent aussi avoir un intérêt pour la biodiversité dans des paysages tels que les nœuds autoroutiers ou encore les terre-pleins centraux des autoroutes. Le rôle de corridor écologique dans les milieux de grande agriculture n’est plus seulement mis en avant pour les espèces massives ou excitantes mais aussi pour les espèces indigènes.

...à la biodiversité urbaine. Paradoxalement, en ville, les études sur la contribution des voies de transport à la préservation d’espace contribuant à l’installation d’une nature diversifiée sont plus rares. En effet, en milieu urbain, les accrochements de voies de transport n’ont pas pour vocation à accueillir des espaces dédiés à l’entretien d’une nature diversifiée, en raison de contraintes administratives et réglementaires. Des mesures qui sont mises en place de manière à permettre la bonne fonctionnalité des mouvements de circulation de transport, ce qui en entretient des surfaces importantes dédiées par les entrepreneurs gérant des terrains. Surtout lorsque l’on se situe en présence de contextes urbains très denses, où les surfaces non constructibles sont de plus en plus convertis pour leur habitat.

Cependant, l’évaluation de cette biodiversité émerge de plus en plus comme un élément clé de l’action essentiel dans l’élaboration des politiques publiques d’aménagement comme chez les gestionnaires opérationnels dans un effort d’adhésion au modèle de la ville souhaitable. Les grands centres urbains doivent faire face à de nombreux enjeux sociaux, dont une meilleure prise en considération du bien-être de la population et d’une plus grande insertion...
de la biodiversité au sein des continuums écologiques, dans un tissu urbain en expansion rapide.

De cette manière, le renouveau des transports urbains est un enjeu à la fois technique et scientifique. Une nouvelle prise de conscience de la nécessité de préserver et de développer une nature riche et diversifiée, en prenant en compte les potentiels de mouvement des écosystèmes présents, dans un contexte de plus en plus pressant d’adaptation au réchauffement climatique. Certains aménagements le long des infrastructures peuvent favoriser ou au contraire nuire au développement de la biodiversité.

Afin de s’assurer d’une diversité écologique suffisante dans les milieux urbanisés, les infrastructures de transport urbain doivent contribuer à la conservation et à l’amélioration de la biodiversité à travers l’élaboration de corridors écologiques au sein de leurs réseaux. Par ailleurs, la réalisation de corridors de faune et de flore est indispensable pour les espèces de faune et de flore. Le rôle de la gestion des écosystèmes urbains devient ainsi important dans un espace urbain interconnecté avec les politiques publiques d’aménagements urbains d’Europe. Les services rendus par la nature en ville se révèlent d’une incomparable richesse tant dans la biodiversité des populations, allant de l’agriculture au tissage de tomettes, en passant par la réduction des RUT².

Les aménagements urbanisés, tels que les parcours cyclables, les voies piétonnes, les espaces verts et les espaces publics, sont des outils d’aménagement urbain qui peuvent contribuer à la conservation et à la restauration de la biodiversité. Ils sont également des instruments pour améliorer la qualité de vie des citoyens, en donnant accès à des espaces verts et à des lieux de loisirs proches de leurs domiciles.

Les infrastructures vertes, en dehors du nombre insuffisant d’études explorant la présence de biodiversité dans les infrastructures, contribuent à la préservation et à la restauration de la biodiversité. Elles permettent de créer des corridors de biodiversité dans les milieux urbanisés, favorisant ainsi la migration de différentes espèces et favorisant la diversification de la biodiversité dans les milieux urbains.

Dans cette perspective, le renouveau des transports urbains est un enjeu clé pour la préservation et la restauration de la biodiversité. Les infrastructures de transport urbain, tels que les réseaux de transport en commun, sont des outils essentiels pour améliorer la qualité de vie des citoyens en offrant des espaces verts et des espaces publics de qualité. Ils sont également des instruments pour améliorer la qualité de vie des citoyens, en donnant accès à des espaces verts et à des lieux de loisirs proches de leurs domiciles.

Cela concerne, entre autres, la mise en œuvre de projets visant à améliorer la qualité de vie des citoyens et à favoriser la préservation et la restauration de la biodiversité. Les infrastructures de transport urbain ont un rôle crucial dans ce cadre, en offrant des espaces verts et des espaces publics de qualité, favorisant ainsi la migration de différentes espèces et favorisant la diversification de la biodiversité dans les milieux urbains.
de transport au travers des paysages artificiels des villes. Cependant, ces contributions aideraient mince- rites pour le moment, ce qui est renforcé par le manque de connaissance des dynamiques permettant de mieux comprendre le fonctionnement et les enjeux atténuants à cette biodiversité.

Pour ces raisons, nous pensons qu’il est donc pertinent de proposer un état des lieux des connaissances sur le sujet avant de faire émerger de nouveaux questionnements, à l’origine de cette étude. Ces travaux de recherche s’inscrivent à la fois dans une dimension prospective et dans une perspective d’enjeux actuels de la ville durable qui, au prix de la Conférence mondiale sur le climat, n’a jamais été autant d’actualité.

Dans quels mesures la présence d’une IIT peut intégrer des liens de nature, des paysages nouveaux, capables d’accueillir la biodiversité dans une démarche vécue par les citoyens, est-elle visible sur le paysage urbain et peut-on l’apprécier, même à distance, par son impact sur la qualité de vie ?

LES RÉSEAUX CONCERNÉS

A. Le réseau ferroviaire

Les dépendances vertes, des voies ferrées, réseaux de transports, ont une fonction de médiation, de lien entre les lieux de travail et de lieu de résidence. Elles peuvent agir sur la qualité de vie, l’accès à des espaces vertes, l’accessibilité des cités, la biodiversité. Les voies ferrées possèdent un potentiel d’aménagement qui peut être utilisé pour renforcer la biodiversité des espaces urbains.

B. Le réseau routier

Le débat sur les routes et les autoroutes est un débat important pour la biodiversité. Les routes sont des voies de communication importantes, mais elles peuvent également être des ébarbons pour la biodiversité. Les autoroutes, en particulier, sont des voies qui coupent des habitats, perturbant la circulation de la biodiversité. Il est donc important de trouver des solutions alternatives qui permettent de minimiser ces impacts.
Le rôle de la route comme vecteur de transport et de dispersion de la flore a fait l’objet d’un certain nombre d’études au xxe siècle. De nombreux auteurs se sont penchés sur les conséquences des effets induits par la route sur la biodiversité, mais peu d’entre eux se sont penchés sur les mesures de réduction de la fragmentation par la route et les effets bénéfiques associés aux accotements routiers en milieu urbain du fait des conditions particulières offertes (terreinte, humidité, luminosité, degré de perturbation) pouvant permettre le mouvement d’espèces. En effet, les surfaces sous influence d’infrastructures de transport sont considérables en raison d’un hectare par kilomètre linéaire de route en Europe ou en Amérique du Nord.

La réponse pourrait se situer dans une réduction de cette fragmentation. En effet, l’effet corridor concerne principalement les espèces générales et sauvages aux perturbations ainsi que les espèces invasives. Dans le cas des bords de routes, l’effet corridor est facilement observé, témoin un constat écologique, entre la structure de la végétation présente dans le corridor et dans l’environnement pour la biodiversité.

Les berges de voies navigables
Les berges de voies d’eau sont des écologies complexes à forte valeur écologique puisqu’ils constituent des zones de rencontres diversifiées entre le milieu terrestre et le milieu aquatique. Pourvues de multiples usages, il est important de noter que les opérations les plus exemplaires de requalification des cours d’eau, au nom du paysage notamment, sont le fait des villes, dans un mouvement qui apparaît comme général.

Des travaux andorans en témoignent en France, dès la fin des années 1980, concernant la Seine, la Loire et le Rhône surtout, mais un peut citer le cas de Londres ou de Philadelphia. Cependant, le développement d’une approche écologique autrement qu’urbanistique, prend en considération les berges des voies navigables comme des structures favorables à l’implantation et au développement d’une biodiversité en milieu urbain ne s’est fait que très récemment.

En effet, la politique d’aménagement et de gestion des berges fluviales mises en place au cours des dernières décennies a le plus souvent conduit à l’artificialisation des berges, de manière à conforter et accompagner le développement d’un tissu fluvial en pleine expansion. D’autre part, la logique économique de stabilisation et de protection des berges contre les phénomènes naturels de crue a communément pris le pas sur les considérations fonctionnelles et les composantes environnementales propres à ces milieux.

De cette manière, la plupart des initiatives pour la maîtrise des impacts des activités fluviales se sont le plus souvent focalisées sur l’amélioration et la gestion qualitative de la ressource en eau, et non sur les pratiques de gestion des espaces végétalisés ou riches en biodiversité. En outre, les démarches se multiplient pour identifier les effets positifs de telles structures comme les espaces écosystémiques fermés par certaines stratégies de navigation, leur pouvoir de stabilisation dans l’aléas de croissance ou les berges naturelles humides facilitant la dispersion des graines par pollinisation hygrophile pour les territoires traversés ou dans une démarche d’évaluation environnementale d’avant-projet comme l’exemple du projet Seine-Nord Europe.

Les milieux urbains facilitent aussi l’introduction d’espèces invasives. Une eucalyptus menacée à Berlin suscite une plante d’arbres indigènes les longs de conduits fluide avant de prévoir les risques d’invasion d’espèces nuisibles dans certains milieux.

D. Les lignes à haute-tension
La littérature sur la construction des infrastructures des lignes à haute tension à la biodiversité dans les espaces fortement urbanisés est infime. Cela pourrait s’expliquer en partie par l’encombrement des installations. Car si leurs emprises apparaissent réduites, leurs réseaux couvrent de grandes surfaces paysagères en raison de leur étendue spatiale. De plus, la présence des lignes en surpenti, des contraintes de constructibilité, du hauteur de type de couvert végétal sont imposées.

Il est possible que les lignes à haute tension d’espèces migratrices. Très souvent, les exploitations, les lignes électriques ne sont pas simplement considérées comme des couloirs pour la transmission d’électricité, mais aussi et également susceptibles de constituer des espaces de refuge pour des espèces pollinisatrices telles que les abeilles. Ce sont aussi des espaces de recolonisation et d’habitats pour les faunes sauvages, notamment les oiseaux qui, grâce à l’adaptation de pratiques de gestion adaptées aux territoires traversés et de réduction des pesticides, ont pu prospérer. Enfin, une connaissance approfondie de l’état de la biodiversité des ouvrages existants et à venir permettrait de mieux évaluer comment ce type d’infrastruc-
Les gazoducs

Dans une majorité de situations, les canalisations de transport de gaz naturel sont enterrées et recouvertes sur toute leur longueur d’un mètre de remblais. Les impacts de ces infrastructures sur la nature des sols se concentrent principalement lors de la phase chantier, puisque les gestionnaires réalisent une tranchée qu’ils remblaisent une fois la canalisation posée.

Les gestionnaires s’inscrivent donc davantage dans le cadre d’une remise en état cohérente des terrains. Cependant, les bandes d’infrastructure linéaires situées sur subsoliers des canalisations de gaz naturel, présentent l’intérêt non négligeable de laisser en place de la biodiversité. En France, une convention tirée entre la région Île-de-France, la région Île-de-France, la région Île-de-France, le CNRE et l’entreprise gestionnaire GRTgaz, a permis de réaliser la première étude floristique sur les bandes de servitude du réseau de transport de gaz naturel implanté en Île-de-France et en Eure-et-Loir, dans les paysages partiellement urbanisés.

Ces évaluations ont permis de dénombrer près de 600 espèces sur les trois années d’étude conduites entre 2007 et 2009. Au total, ce sont plus de 40% des espèces de la flore francilienne (environ 1 500 espèces) que l’on retrouve sur les bandes de servitude de ces deux départements. Les inventaires floristiques sur les limites des kanalisations potentiellement intéressantes ont été définis par une sélection automatisée de tracés à l’aide d’une typologie d’occupation des sols permettant la supervision informatique des limites d’emprises existantes sur ces deux départements à celle des principales zones à forts enjeux de biodiversité. Cela a permis d’aboutir à une zone d’intervention longue de 500 kilomètres.

L’interrogation selon laquelle les bandes de servitudes, liées aux emprises des gazoducs, sont susceptibles de présenter un intérêt floristique pour la sauvegarde et la gestion de la biodiversité n’est plus à démontrer, mais fait l’objet de recherches confidentielles, essentiellement alimentées par les gestionnaires de ces infrastructures.

Biodiversité et intérêts économiques

Concernant les perspectives et les applications, il est nécessaire que les dépendances vertes des infrastructures de transport puissent avoir des rôles écologiques intéressants, favorisant le déploiement des espaces constituant un habitat en milieu urbain, qui permettrait de les considérer comme faisant partie de la trame verte des villes.

Cependant, quelques publications laissent penser que ce rôle est surtout vérifié pour des espèces généristes et à fortes capacités de déplacements, pour des espèces invasives et dans des contextes déjà artificiels. Une prise en considération qui contribuerait à leur apporter une nouvelle valeur et dont il semble désormais important de tenir compte lors de la réalisation d’aménagements en faveur de la biodiversité en milieu urbain.

Des approaches expérimentales... Des aménagements possibles à la fois en ce qui concerne la connectivité et les pratiques de gestion opérées par les gestionnaires opérateurs. Il nous semble donc que des approches expérimentales pourraient apporter des informations supplémentaires pour aider de manière plus précise les conditions d’optimisation de l’apport biodiversité des infrastructures de transport en milieu urbain. Il serait notamment intéressant d’analyser les effets d’une modification des fonctions dans des secteurs où plusieurs ITT se croisent, en s’accordant à présumer que la convergence entre différentes infrastructures de transports pourrait être à l’origine d’une biodiversité plus riche, non seulement en nombre d’espèces mais aussi en fonctionnalités écologiques, que dans le cas d’infrastructures isolées physiquement.

D’une manière générale, les LITI2 n’ont toutefois pas vocation à accueillir des espaces dédiés au maintien d’une nature caractéristique comme étant pourvoyeur de biodiversité. Cet rôle ne peut être assuré que dans des conditions particulières favorisant l’habitatabilité et l’occurrence de dessins et de gestion en place par les gestionnaires des infrastructures de transport. Il y a donc nécessité de prendre en compte ces infrastructures comme ayant des contraintes biologiques potentielles pour le développement de la biodiversité dans les milieux urbains et les paramètres offerts par les ITT pour optimiser l’apport en biodiversité.

Ainsi, au vu des résultats issus des différents travaux précédemment évoqués et en l’état actuel des connaissances sur le rôle favorable de ces infrastructures pour la biodiversité en milieu urbain, la communauté scientifique doit s’engager progressivement et durablement sur les mécanismes d’actions contribuant à favoriser l’adaptation de la biodiversité aux restrictions et aux contraintes d’accueil offertes par les réseaux d’infrastructures en milieu urbain...

...à la prise de conscience collective. La prise en compte de la biodiversité dans les réseaux existants est en cours aujourd’hui largement négligée, y compris dans le cadre législatif. Mais cette considération a tendance à évoluer dans le bon sens depuis quelques années grâce à une prise de conscience de la société et du monde politique. En effet, la biodiversité touche aujourd’hui plus d’acteurs que dans le passé, y compris les aménageurs qui l’avaient largement délaissée.
Nous nous apercevons cependant que la biodiversité est encore trop souvent considérée à l’échelle locale et en tant que biodiversité exceptionnelle (espèces rares et emblématiques).

Les processus écologiques à larges échelles spatiale et temporelle ne sont que très peu pris en compte. Il est vrai qu’ils sont difficiles à identifier et à quantifier et réalisent donc difficilement avec des intérêts économiques et de développement qui, eux, sont imaginables sur le long terme et à large échelle spatiale, surtout grâce aux moyens employés à cette intention. La prise en compte de la biodiversité est donc loin d’être considérée comme une priorité ou un enjeu national par l’ensemble des acteurs.

APPROCHE GLOBALE DE BIODIVERSITÉ URBINE

En conclusion, on a vu que nous disposions d’un certain nombre d’inventaires floristiques et faunistiques ainsi que de données statistiques et d’œuvres identifiées concernant la présence de biodiversité sur les infrastructures de transports en milieux urbains voire périurbains. Ces milieux sont traditionnellement appréhendés par la diversité des taxons, notamment celle des espèces. On sait que la diversité biologique joue un rôle tampon sur la résistance et la résilience de ces milieux. Un nombre relativement important d’espèces apporte en effet une certaine souplesse de réponse vis-à-vis de conditions particulières liées à l’environnement urbain de ces ITT.

Cependant, les espèces présentes sur les infrastructures de transports n’ont pas toutes le même rôle, car évoluant dans des contextes urbains différents. Si la prise en compte de la faculté taxinomique de la biodiversité reste bien entendu pertinente pour traiter un certain nombre d’entre elles, d’autres facettes de la diversité doivent être considérées si l’on veut prendre dans son ensemble le fonctionnement des processus écologiques présents sur les infrastructures de transport urbaines.

L’approche fonctionnelle de la diversité biologique a conduit à un fort développement au cours des vingt dernières années grâce à des avancées conceptuelles majeures, en reformulant certaines des questions relatives à la compréhension des systèmes écologiques et à leurs composantes. De récents travaux ont montré que la diversité fonctionnelle (c’est-à-dire la composition en espèces selon leur rôle fonctionnel) avait un impact aussi, voire plus important, sur le fonctionnement des écosystèmes des ITT que la diversité des espèces elle-même. En effet, il apparaît plus important qu’un maximum de rôle fonctionnel soit représenté, une diversité spécifique élevée pouvant représenter un petit nombre de rôles fonctionnels.

Processus écologiques à approfondir. Considérant cette démarche comme au centre des évolutions interactives des milieux étudiés dans cet article, l’approche que nous concluons est novatrice, car elle met l’accent sur des processus écologiques encore largement méconnus en milieu urbain. Ce constat démontre l’intérêt essentiel de mieux s’interroger sur les dépendances vertes des infrastructures de transport comme éléments porteurs de formes de fonctionnalités écologiques, susceptibles d’améliorer la compréhension de questions telles que celles portant par exemple :

- sur la distribution des organismes – on ne prend plus seulement en compte les seules espèces rares ou patrimoniales, mais également des espèces communes ;

- l’identification des rôles qui gouvernent l’assemblage des communautés ;

- la manière dont le fonctionnement de certaines espèces « clés de voûte » se traduit au niveau de l’équilibre écologique d’infrastructures de transport convergentes entre elles et le contrôle des services que ces derniers peuvent donner aux sociétés humaines.

L’optimisation de l’approche fonctionnelle des ITT doit être, à notre sens, intégrée dans les recherches sur la résilience des espaces urbains dédiés à la biodiversité en fournissant une matrice écologique complémentaire susceptible de contribuer à une démarche de renaturation des milieux urbains. La transition écologique des infrastructures de transport doit s’opérer par des stratégies d’adaptation plurielles, compatibles avec les exigences et les dynamiques de développement de la biodiversité en milieu urbain.

Engagés dans des politiques de réduction de leurs consommations d’énergie, de matériaux, d’émissions de gaz à effet de serre, les gestionnaires d’infrastructures peuvent aussi contribuer à la résilience de la biodiversité urbaine et ainsi contribuer à la diminution des perturbations climatiques qui menacent notre modèle de vie urbain. Enfin, quels que soient les paysages traversés, les infrastructures de transport ont un rôle à jouer concernant la gestion de la nature dans les réseaux urbains de la ville durable, en nous offrant la possibilité de repenser notre conception de la biodiversité et des liens qui nous relient à elle.

1. Un taxon est une unité d’êtres vivants regroupée parce qu’ils possèdent des caractères en commun du fait de leur parenté (source : Nature Sciences).
2-7. Les ILTe favorisent la progression des espèces vers les cœurs urbanisés : l’exemple du parc de la Poudrerie, Seine-Saint-Denis

Article paru dans la revue Cybergeo – Auteurs : Laura Clevenot, Cédissia About, Nathalie Frascaria-Lacoste, Philippe Jacob, Laurent Simon, Pierre Pech

Do Linear Transport Infrastructures provide a potential corridor for urban biodiversity? Case study in Greater Paris, France

Laura Clevenot, Cédissia De Chastenet, Nathalie Frascaria, Philippe Jacob, Richard Raymond, Laurent Simon and Pierre Pech

The authors would like to thank RFF (Foundation – Tiphaine Capronnier and University Paris I Panthéon-Sorbonne) and FITCOP program for their help with this survey. We thank Eric Bercault and Neil Wockley for providing language help.

Introduction

Recent studies have emphasized the increasing impact of Linear Transport Infrastructures (LTI) on biodiversity. LTIs include, among other, railway, roads and highways, waterways and power transmission lines. Both negative (Bicker, 2001; Peninat et al., 2006; Jackson and Fahrig, 2011) and positive (Ranta, 2008; Peninat et al., 2012; Vergnes et al., 2013) impacts have been highlighted. Numerous authors explore various indices or values in order to identify these negative and positive impacts that this relates to genetic, specific, ecosystemic or functional biodiversity. Most of them especially use ecological assessment approaches, in particular to identify negative impacts (Sekler, 2001; Machado, 2004; Jackson and Fahrig, 2011). Overall, it is more and more established that LTIs may also have positive impacts and contribute to local and regional biodiversity preservation (Ranta, 2008; Peninat, 2012; Peninat et al., 2012; Vergnes et al., 2013). For Ranta (2008), it is...
assumed that there are original habitats along railway and road corridors as well as urban habitats (Hobbs et al., 2008; Baker et al., 2007; Pouyat et al., 2007; Williams and Jackson, 2007; Byrne et al., 2008; Grimm et al., 2008). These LTIs and corridors are integrated into urban ecosystems (De Weet et al., 1998; Savard et al., 2000; Pellissier et al., 2012). On the other hand, a number of recent authors highlight the numerous ways to manage these positive impacts. In order to contribute to manage such more or less natural areas related to LTIs, most researches provide indices (Nachado, 2004; García-García et al., 2016). They are useful for nature managers. The indices are developed with systematic analysis for expressing naturalness or biodiversity and also operational management activities (Vergnes et al., 2013; Haaland et al., 2013).

In urban areas, and especially in the Paris area, in the city and suburbs, the contribution of LTI edges to naturalness is more and more documented (Penone, 2002; Vergnes et al., 2015; Ciergeau et Blanc, 2019). Authors highlight the biodiversity along the infrastructures and corridors as abandoned LTIs become vacant (Foster, 2014) or especially along active infrastructures (Penone, 2002). Most public policies aim to develop urban green spaces as a contribution to numerous ecological services such as energy saving and emission reduction (Nielson et al., 2014; Zhang et al., 2016), pollution reduction (Blanusa et al., 2015), quality of life and well-being (Swart et al., 2014; Foo, 2016).

In France, ITECOP (Land Transport Infrastructures, Ecosystems and Landscapes) is the scientific programme led by the French Ministry of Environment, whose purpose is to contribute to a better understanding of the impacts of LTIs on biodiversity. Our research is integrated into the French ITECOP programme concerning the impacts of LTIs on biodiversity. Our purpose aims to demonstrate how LTIs can promote the spread of a specific biodiversity through a reservoir of biodiversity in the Paris area. In order to explore both such scientific and operational aims, we study patches of naturalness along LTI edges around the city of Paris, using a forest to-urban gradient (Porter et al., 2001). Our aim is to understand the types of biodiversity developed. In this study, our purpose is to understand the impacts of LTI edges on a suburban forest whose context is particularly original in the Greater Paris area (Fig. 1). In this paper we present specific studies in an original area of Greater Paris. We try to understand if a local natural area, a Natura 2000 area, may be a source for biodiversity and if LTI edges facilitate spatial development of biodiversity.
Area studied: the Poudrerie Natura 2000 area

Our work consists in inventorying and analysing the potential biodiversity index on the edges of two Linear Transport Infrastructures crossing a forest park in the northern part of the Greater Paris district (France). The study presented here concerns the Poudrerie Natura 2000 area. Located in the north-eastern part of Greater Paris, it is a forestry reservoir of biodiversity. Two linear transport infrastructures pass through this park: the Ourcq Channel (Canal de l'Ourcq in French) and a section of the suburban train line.

One of the characteristics of this site is that it has been granted various natural heritage protection labels due to the availability of biodiversity. For instance it is part of CWA, Classified Wooded Areas (IEC in French), which is regulated by article L.139-1 of the French Urbanism Code. The aim of this classification is "to ensure the preservation of existing woodlands and forests, but also urban green areas, tree-planting projects, isolated veteran trees and any unwooded areas which could be potentially planted". Thus the classification bans "any land-use changes which could jeopardize the conservation and protection of afforestation, or the development of tree planting" (Marcadet et al., 2011).

The forest park is also established as a natural zone of ecological, floristic and faunistic value (ZNIEFF in French). As "a sector of high biological and ecological interest" (MNHN, 2003-2015) it is also classified as "a vast, rich and little altered natural unit offering major biological potential" (MNHN, 2003-2015). This status was granted to the park by the Paris regional scientific council of natural heritage. Lastly, the forest park La Poudrerie belongs to the special protection zone called "sites of Seine-Saint-Denis" regulated by the European Natura 2000 bird directive (Marcadet et al., 2011). Being the only European site within a...
dense urban area it includes 15 parks and forests spread across the departmental district, among which the park forest La Poudrière (ECOTER, 2013), which has helped the site receive the Natura 2000 label in Seine-Saint-Denis because it harbours six of the twelve bird species listed in the European directive: the black woodpecker (Dendrocopus martius), the idle spotted woodpecker (Dendrocopos major), the honey buzzard (Pernis apivorus), the European kingfisher (Alcedo atthis) as well as the Montague’s harrier (Circus pygargus) and the hen harrier (Circus cyaneus). The site is also characterized by a stable continuity of afforestation, which is a relevant factor of biodiversity in a forest environment "as it is considered one of the major elements of naturalness" (Dippenaar et al., 2002; Liethermayer R. and Franklin J.F., 2002; Lundström, 2008). When using the Egrid portal website to compare old maps with today’s aerial photographs, we can clearly see that some of the original forest has been preserved since the 18th century (fig.2).

Figure 2: Comparative evolution of Poudrière Park Natura 2000 area (in blue) and land occupations since the 18th century (Greater Paris)

7 On a local level, studies made by the Ecotex research consultancy applying the Potential Biodiversity Index, PBI (Larricu and Gorin, 2008; Larricu et al., 2012; Emberger et al., 2013), have revealed the presence of "a rich and complex forest ecosystem" within the park (ECOTER, 2013). These various elements enable us to claim that the forest park La Poudrière serves as a reservoir of biodiversity.

Methods

8 This study examines the positive role played by the LTI edges in the development of the biodiversity identified in the park. The aim is to understand how and why the linear transport infrastructures edges are corridors that should become part of the green and blue ecological network projects.
Identifying the forest park as a reservoir of biodiversity

Studying maps from the Natura 2000 document "Sites en Seine-Saint-Denis" (Marcadet et al., 2013) has enabled us to assess the spread of the plant cover across the department area between 1800 and 2002. Moreover, a comparative analysis of various documents ranging from old Cassini maps, military and topographic maps to aerial photographs has been made using the Geoportail website. The current outlines of the park acreage have been cut out thanks to the tool called Polygone and superposed on each ancient map, using the same scale. This has enabled us to compare the spatial extent of the park at various times so as to assess the alteration of the park surface area from the 18th century up to the present day (fig. 2).

Identifying a landscape continuum

The analysis of a current aerial photograph (fig. 3) clearly shows that the park has extended eastward, which is confirmed by the photos taken in the field showing similar landscapes (fig. 4). Shot from the eastern tips of the park where the extension lies and facing west, both photos present a view of the Grisy channel with grassy berms on both sides of the infrastructure, a cycling path along the southern bank and wooded extensions of the berms.

Figure 3: Landscape structures around Paudrie Park Nature 2000 area (Greater Paris)
The similarities in landscape have reinforced our decision to apply the Potential Biodiversity Index to study the role played by the rail and water ways edges within both the park and its land extensions, so as to compare the collected data.

The berms, which make up the land extension and on which a new wooded area has grown, are man-made. As illustrated in Fig. 4 and 5, the canal runs below the rail tracks and the sloping up berms. The berms had been artificially created when the canal was built as underlined by Pierre-Simon Girard in charge of the construction under Napoleon Bonaparte: "Our task is to erect, with the utmost regularity and definite slanting angle, the internal berms sloping up from the canal banks, the towpaths and the embankment or embanked." (Girard, 1831).

Collecting data

The Potential Biodiversity Index, FBI, from Larrieu and Genin (2008; Larrieu et al., 2012; Emberger et al., 2013) has been applied to survey the whole area covered by our study so as to focus on the capacity of the rail and water ways edges to harbour any forms of biodiversity. According to Larrieu and Genin (2008) and Fearis and Humphrey (1999), potential biodiversity is the capacity to harbour biodiversity linked to present and varied characteristics, and in particular functional traits more or less related to environmental constraints (Cornelissen et al., 2001; Pe Bello et al., 2013; Swarzyńska et al., 2015; Di Battista et al., 2016).

The FBI has been primarily designed for helping forestry management to carry out preliminary diagnoses so as to be able to identify the points to improve for an optimal development of biodiversity (Larrieu and Genin, 2008; Larrieu et al., 2012). As far as this study is concerned, the index has helped to assess the potential capacity to harbour the...
biodiversity developing on the rail and water ways edges or in the area around the LTI, based on several criteria assessing the forest habitat (Garcia-Garcia et al., 2010; Pellisier et al., 2012).

The design of this PBI has been based on 10 indices, 7 of which are linked to tree planting and forestry management and 3 are linked to the local environment (Table 1). Each factor ranges from 0 to 5.

Description and justification of the indices

Index A – Diversity of the native forest tree species

Larrieu and Gonin (2008) justify the choice of the first factor by the fact that "most of the time species of the same kind tend to present both the same dynamic behaviour and quite similar biological characteristics and potential". Moreover, "the related biodiversity varies according to the species, but on the whole, growth depends on the number of native species" (Gosselin and Laroussinie, 2001; Larrieu and Gonin, 2008). When the index is applied in the field, "a species is included as soon as one individual is detected. The exotic species will not be taken into account since their biological potential is sharply inferior in our countries to that of the native species" (Larrieu and Gonin, 2008).

The rating scale of this index, that is to say 0 for 1 or 2 species, 2 for 3 or 4 species and 5 for 5 species and more, has been calibrated from the number of tree species observed in various stands of trees such as tree-planted plots which were heavily damaged by the 1999 storm and closed tree-planted plots made up of adult trees.

Index B – Vertical structure of vegetation

Index B finds its origin in the influence of the number of layers on biodiversity. A stand of trees is classified in 4 levels based on the usual definitions in phytosociology (Delpêch et al., 1985; Ferris and Humphrey, 1999; Bowers and Boutin, 2008): herb layers, shrub layers (less than 7 m high), lower arborecence (7 to 20 m), and higher arborecence (more than 20 m). The rating increases according to the number of existing layers: 0 for 1 or 2 layers, 2 for 3 layers, 5 for 4 layers (Larrieu and Gonin, 2008). Therefore, there is a close relationship between the abundance of bird life and the number of layers, limited to the amount of available cavities, all of this in various forest habitats (Larrieu and Gonin, 2008). Moreover, the abundance of nocturnal lepidoptera insects increases with the structural heterogeneity of the tree coverage (Larrieu and Gonin, 2008).

Indices C and D – large standing (C) and down (D) dead wood

These two indices are included in the potential biodiversity index because dead wood shelters saproxylic processes, thus playing a significant role in biodiversity (Grove, 2002; Bouget, 2007; Erustel 2001). The very nature of the saproxylic processors depends not only on the amount of dead wood but also on its characteristics: wood species, size and position, stage and mode of decomposition, microclimatic conditions (Gosselin and al., 2006; Larrieu and Gonin, 2008). So the rating of these two indices varies according to the position of the trunk, standing or lying on the ground. Indices C and D are used according to the quantity of dead wood with a circumference ranging from 120 cm to 130 cm (a 40 cm diameter). For these two indices, the Larrieu and Gonin (2008) rating scale
has been adapted to our field of study. Given the massive quantity of wood identified in the field and its high potential capacity to harbour some form of taxonomic biodiversity, two more indices have been added to assess the small dead wood on the ground (index value: 0.5) and the stems and trunks with a circumference less than 120 cm (index value: 1).

Indices E and F – Large living wood (E) and living trees bearing microhabitats (F)

Microhabitats are relevant indicators of biodiversity (Yang et al., 2015). Living trees bearing microhabitats play a significant role in biodiversity because they harbour specific taxa (Ferris and Humphrey, 1999; Cosselin et al., 2006; Winter and Møller, 2008; Larrièr and Gonin, 2008; Yang et al., 2015). Trees with large diameters are crucial for biodiversity since "they represent very heterogeneous habitats which can harbour many various specialised species living side by side" (Kolström and Larmatjarvi, 2000). Paganova et al. (2015) show the role played by the shape of trees. Moreover, as underlined by Larrièr and Gonin (2008), some saproxylic groups like the Syrophid diptera are more easily found in microhabitats associated with older trees than in those associated with dead wood.

Index H – Age and condition of the forested area

As mentioned previously, the time continuity of the tree coverage is a relevant factor of biodiversity (Dupouey and lambrine, 2013; Vallauri et al., 2012). According to Larrièr and Gonin (2008) and Lundström (2008), it is clearly admitted that the age of the forest cover has an influence on the floristic diversity: several studies conducted in the mesophilic beech and oak forests in Western Europe have helped to set out a list of specific species which can be found in old-growth forests (areas which have been forested for more than 200 years), and "whose occurrence is much less significant, though not totally absent, in more recent forests" (Dupouey et al., 2002). Lastly, even if the age does not seem to affect the abundance of the specific vascular flora on a global scale (Lundström, 2008), it does increase the richness locally as it has been shown in recent research carried out in the Champagne alluvial forests (Larrièr and Gonin, 2008).

Index I – Wetland habitats

According to authors (Larrièr and Gonin, 2008; Le Viel et al., 2009; Sheffers and Paskowski, 2013; Sokol et al., 2015), wetland environments, due to their specific composition, offer a different type of taxonomic diversity for trees growing there. They also contribute to increasing the diversity of the ecosystem. These environments are taken into account thanks to index I as soon as water bodies are larger than 100 m². The ecological diversity being a significant element for the structuring of wetland environments, the rating of this index is based on the diversity of these environments rather than the size of their total surface area. As a result 0 corresponds to no wetland environment, 2 for one type of environment only, and 5 for diversified wetland environments.

Index J – Rocky environments

Rocky environments – screes, cliffs, rock plates – have site-specific characteristics which account for the development of a specific vegetation including many endemic species.
(Pech, 2013). As stated by Goinin and Larrieu (2008), when they cover a significant surface area (a minimum of 1% of the studied surface area), rocky environments increase biodiversity, all the more so when they are diversified. The rating is thus the same as for factor 1.

The potential biodiversity index has been applied every 280 metres along both sides of the linear transport infrastructures with a margin error of a few meters due to the field measurement conditions. The study fields are situated within 20 meters from the infrastructures, a distance which corresponds to the width of the slopes bordering the sides of the rail and water ways (Fig. 5 and 6). The distances have been calculated with a Bushnell laser and the collected data have been entered into a spreadsheet in order to be processed statistically. A total of 84 surveys have been carried out corresponding to the 33 hectares surveyed.

Figure 6: FBI method explanation schema applied to linear infrastructures edges and forest park.

Studying the biological potentialities

The potential capacity to harbour biodiversity in a forest stand largely depends on the type of tree species. Trees are the most influential elements in a forest ecosystem. Their characteristics have a major influence on the species found in the forest (Emberger and, 2013; Swoceznk et al., 2015). Consequently, the data collected in the field have been used to study the biological potential of each recorded tree species based on the rating table designed by Branquard and Liegeois (2005). Tree species have then been classified after applying the Potential Biodiversity Index.

Results

The FBI surveys conducted in this study have helped to supplement those led by Ecoter in 2013 (Ecoter, 2013), but they also compare the results found around the linear transport infrastructures with those found in the forest park La Poudrière itself. The FBI indices (which have been assigned letters) are set out in Table 1.
Index A – Native forest tree species

27 More than half of the surveys carried out over the whole study area have obtained the maximum score (5). Though 50% of the surveys carried out on the infrastructures themselves have received the average score with no minimum score (0) given, the scores obtained in the area situated in the land extension of the infrastructures tend to vary more. The average score has been obtained by 40.5% of the surveys and the minimum score by 4.5% of the surveys. Most of the surveys which have received the average or minimum scores were conducted either at the far ends of the study area or near bridges. While the maple tree is very present all over the study area, the hornbeam (Carpinus sp.) and the hazel tree (Corylus sp.) are the most common species found on the sections of the infrastructures passing through the park, namely in 50% of the surveys. The ash tree (Fraxinus sp.) and the hazel tree (Corylus sp.) are the most common species found on the land extension of the park, namely in 75% of the surveys.

Index B – Vertical structuring of the vegetation

28 The vertical structuring of the vegetation is very similar on both the infrastructures and the land extension. The maximum score was given to most of the surveys, that is to say 95% of the surveys in the park and 97.5% in the land extension. Over the whole study area only two surveys, which were conducted in the park, have received an average score. Similarly, only one survey, conducted in the land extension, has obtained the minimum
score. It can be explained by the fact that the surveys were conducted either near a road bridge or at the far ends of the study area.

Index C – Amount of standing dead wood

Stading dead wood of wide circumference (more than 40 cm in diameter) has not been found on the infrastructures passing through the park but little of it has also been found on the sections of the infrastructures beyond the park. Over the whole study area, the minimum score has been obtained by 98.2% of the surveys. Standing dead wood of large circumference has only been found in one survey in the southern part of the rail tracks. This is probably due to the clearing done by the rail management team for safety reasons.

Index D – Amount of dead wood on the ground

Though the surveys, which have been conducted on the infrastructure sections crossing the park, show the significant presence of stumps and trunks with a circumference less than 120 cm which have been indexed 1 (78.5%), the size and the quantity of down dead wood vary more across the land extension. Though there is a significant presence of medium size dead wood, namely branches and small dead wood indexed 0.5 in 52% of the surveys conducted in the land extension of the park, 31% of the same surveys show the presence of stumps and trunks indexed 1. However, the number of surveys showing the presence of at least one trunk or stump of more than 120 cm in circumference is the same all over the whole study area. Lastly, there are 4 surveys conducted across the land extension showing a total absence of down dead wood, which can be explained by the fact that they were conducted near highly frequented areas at the far end of the extension.

Index E – Amount of large living wood

Little very large living wood has been found over the whole study area, the minimum score having been obtained by 88% of the surveys while no maximum score has been given. However, the average score, mainly corresponding to the presence of 1 or 2 large living wood items, has been given to 23% of the surveys in the park, as compared to only 2% of those conducted in the land extension. The fact that the park is an old growth plantation while, conversely, the one in the land extension is more recent can account for the score.

Index F – Number of microhabitats within the living trees

Trees bearing microhabitats can be largely found over the whole study area. 78% of the surveys have obtained the maximum score, 16.3% the average score and 4.5% the minimum score. It is important to mention that Ivy, *Hedera helix* L., has also been taken account.

Index G – Presence of open environments

There are few open environments found over the whole study area. 72.5% of the surveys have obtained the minimum score, 19% the average score, and 9.5% the maximum score.
These scores can be accounted for by the fact that there are no trees along the infrastructures and very few clearings across the area.

The study of the PBI surveys conducted on the impacts of the linear transport infrastructures over the whole study area has helped to show similar potential capacity to harbour biodiversity for the sections of the infrastructures passing through the park and those passing through the land extension, the former accounting for a 42%-12% PBI and the latter accounting for a 4%-13% PBI. We can find similar results when comparing the sum of all PBIs for each survey, ranging from 11 to 14.5 for the sections of the infrastructures passing through the park, and from 7 to 25 for those passing through the land extension. Thus Fig.7 shows that, over the whole study area, the potential capacity to harbour biodiversity has scored average.

Figure 7. Map of results with the PBI categories and ecological complexity along the two infrastructures (blue and grey lines) near Poudrière Park

According to Braunquard and Liegeois (2009) and Morgenroth et al. (2016), the biological potential of a woody species varies directly with the number of organisms with which it is directly associated through trophic and/or functional links (recycling of the nutrients, mycorrhizas, pollinators, regulation of pest populations, etc.). Furthermore, as shown on Table 2, tree species affect more or less the germination of ancient forest species and the development of biodiversity (Thomas et al., 2011). Table 2 is an illustration of the different species with high biological potential.
Table 2: Main forest species and their biological potential

<table>
<thead>
<tr>
<th>Species</th>
<th>Biological potential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Very high</td>
</tr>
<tr>
<td>Birch</td>
<td>X</td>
</tr>
<tr>
<td>Hornbeam</td>
<td></td>
</tr>
<tr>
<td>Oak</td>
<td>X</td>
</tr>
<tr>
<td>Maple</td>
<td></td>
</tr>
<tr>
<td>Ash</td>
<td></td>
</tr>
<tr>
<td>Beech</td>
<td>X</td>
</tr>
<tr>
<td>Chestnut</td>
<td></td>
</tr>
<tr>
<td>Cherry</td>
<td>X</td>
</tr>
<tr>
<td>Hazel</td>
<td></td>
</tr>
<tr>
<td>Poplar</td>
<td></td>
</tr>
<tr>
<td>Robinia</td>
<td>X</td>
</tr>
<tr>
<td>Aspen</td>
<td>X</td>
</tr>
</tbody>
</table>

Gevenou L. 2015 from Larrieu and Gons, 2008; Thomans et al., 2011; Penone et al., 2012; Nielsen et al., 2014; Umenov et al., 2014; Paganova et al., 2015; Gwawcyne et al., 2015

The plant association of the whole study area mainly includes species with high biological potential, namely the maple tree (Acer sp.), the ash tree (Fraxinus sp.), the poplar (Populus sp.), and the aspen (Populus tremula), as well as very high biological potential such as the silver birch tree (Betula sp.), the oak tree (Quercus sp.), the beech tree (Fagus sp.), and the wild cherry tree (Prunus sp.). Though no species with average biological potential has been recorded over the whole study area, on the other hand the plant association does include two species with low biological potential, the hornbeam (Carpinus sp.) and the hazel tree (Corylus sp.). The chestnut tree and the locust tree are not classified according to their biological potential due to their absence from Tranquart’s and Liegeot’s book (2005).

The analysis of the data collected by the PBI surveys shows that most of the species found in each survey have a high biological potential, the maple tree (Acer sp.) or the ash tree (Fraxinus sp.) being for instance present in respectively 83% and 54% of the surveys. Most often, Acer campestris L. is more or less typical of pioneer or ruderal lands (Umerov et al., 2014). Functional traits of this kind of tree are characteristic of anthropogenic land covers. The oak tree (Quercus sp.) and the wild cherry tree (Prunus sp.), which have a high biological potential, are present in respectively 40% and 31% of the surveys. The results show a balance between the sections of the infrastructures passing through the land extension and those passing through the grounds of the park.

The data from the PBI surveys is also used for comparing the distribution of the forest species identified on the rail and water infrastructures of the study area in terms of biological potential (Fig. 8). The aim of this study being to show if there is a positive role of the linear transport infrastructures on biodiversity, we will only focus on the species with a high and very high biological potential.
Conclusion/Discussion

Although included in a important departmental network of greenways, the forest park la Rouderie is located in a dense urban environment. It is an established reservoir of biodiversity owing to the time continuity of its tree plantation and the various natural heritage protection labels that it has received. Both transport infrastructures run for 2.5 km through the park offering a structural continuity of landscape, which the study of aerial and on-site photographs tends to show. Data to which the Potential Biodiversity Index has been applied, and resulting from the surveys conducted along the linear transport infrastructures edges, both within the grounds of the park and beyond the park across the land extension, show that, in this case, these infrastructures edges have the capacity to harbour average biodiversity. Thereby, a comparison with other similar sites is necessary in order to be able to completely affirm the positive role that LTI edges can have on biodiversity. The tree plantation of the forest park being older than that studied along both transport infrastructures passing through the land extension, the various elements resulting from the study tend to confirm the hypothesis that the edges of these linear transport infrastructures play a positive role in the development of biodiversity. So, these infrastructures and their edges can be seen as potential corridors which can be integrated into the blue and green ecological network projects. And the denser the urban fabric, the more important the role played by infrastructures.

If we answer to the question: why choose the Potential Biodiversity Index? It is well known that various managers of LTI need awareness in order to apply best practices in green areas of their networks (Tomaes et al., 2011). As mentioned by Larrieu and Conn (2008), studies concerning biodiversity are necessarily multi-disciplinary since...
biodiversity implies the study of "genus, individuals, demes, metapopulation, species, communities, ecosystems, and the interactions between the various entities," (Lidemayer and Franklin, 2001). As explained by Machado (2004), a study based on a single criterion would make the results incomplete. While the study of biodiversity requires a multiparametric approach (Du Bus de Warnaff and Devillez, 2002), the evaluation based on the comparison of the natural value with the reference value, as suggested by Du Bus de Warnaff and Devillez (2002), requires using floristic inventories with recovering of the vegetative strata as well as volume inventories, but which were not available in the study area. Given that this study focuses on the habitats favorable to biodiversity, a study of the landscape diversity would have led to incomplete results. The use of a specific or generic indicator of biodiversity would have been impossible due to the limited time and funding allotted for this study and the expertise that it requires. Besides, this method includes "nostalgic references" in its evaluation criteria, namely "hypothetical ecosystem which would have developed had there been no human interaction restraining its development" (Du Bus de Warnaff and Devillez, 2002). This reference cannot be taken into account in an area such as that studied, due to the juxtaposition in time and space of the various modes of management. We provide another argument that local patches and fragmented habitats may have positive effects on biodiversity (Ethier and Fahrig, 2011; Pellissier et al., 2012; Nielsen et al., 2014; Potter, 2015).

BIBLIOGRAPHY

Lundstöm J., 2008, Biodiversity in young versus old forest. Swedish University of Agricultural Sciences Uppala, No.6, URL: http://www.slu.se/papers/7441/introduktionssuppsats.pdf

Musée national d'Histoire naturelle (MNHN) [Ed], 2011, "L'inventaire ZNIEFF" in Inventaire National du Patrimoine Naturel, URL: https://inventaire.mnhn.fr/programme/inventaire-2nifie/presentation

Paganova V., Markova M., Rakay L., 2013, "A qualitative analysis of dendrometric data on
Sorbus domestica L. phenotypes for urban greenery", Urban Forestry & Urban Greening, Vol. 14,
S99-506.

Pellecoster V., Cohen M., Roussy A., Clergeau P., 2013, "Birds are also sensitive to
landscape composition and configuration within the city centre", Landscape and Urban Planning,
Vol. 105, 191-188.

Pomone C., 2012. Fonctionnement de la biodiversité en ville : contribution des dépendances vertes

connectivity for plant communities in an urban context?", Biological Conservation, Vol. 54,
123-132.

Porter L., Forrister B., Blair B., 2001, "Woody vegetation and canopy fragmentation along a

Potter C., 2013, "A case study of forest and woodland habitat loss to disturbance and
development in an ex-urban landscape: Santa Clara County, California 1990-2009", Current
Urban Studies, Vol.2, 18-24, URL:

http://dx.doi.org/10.4236/cus.2013.21003

use change on biogeochemical cycles in Canadel J.C., Fatkii D.E., Pitekia E. (ed.), Terrestrial

Ranta P., 2006, "The importance of traffic corridors as urban habitats for plants in Finland",
Urban Ecosystems, Vol.11, 149-159.

Savard J.P., Clergeau P., Bienecke U., 2006, "Biodiversity concepts and urban ecosystems",

Schaffers B.R., Paszkowksi C.A., 2013, "Amphibian use of urban stormwater wetlands: The role of
natural habitat features", Landscape and Urban Planning, Vol. 111, 139-149.

Sciences.

Sokol E.K., Brown B.I., Carey C.C., Trottiall E.M., Swan C.M., Barrett J.E., 2015, "Linking
management to biodiversity in built ponds using metacommunity simulations", Ecological
Modelling, Vol. 296, 36-45.

Szczenia M., Kalaja H.M., Piekarewicz S., Borsowski J., 2015, "Ability of various tree species to
acclimation in urban environments probed with the JIP test", Urban Forestry & Urban Greening,

Thomases A., De Lera P., De Schrijver A., Vandekerckhove E., Verschoore P., Verheyen K.,
2011, "Can tree species choice influence recruitment of ancient forest species in post-agricultural

ABSTRACTS

Recent studies have emphasized the increasing impact, both negative and positive, of Linear Transport Infrastructures (LTI) on biodiversity. A significant body of scientific and technical knowledge is more and more available to help guide restoration practices concerning especially urban areas. This study explores a comprehensive approach to estimating restoration potential along the LTI edges in the Greater Paris region (in France) in terms of potential biodiversity. Our work consists in inventorying and analyzing the Potential Biodiversity Index, PBI, on sites along two LTI crossing a forest in the northern part of this district. The study concerns a Natura 2000 area, La Poudrière Paris. A total of 84 surveys were carried out corresponding to the 15 hectares surveyed. We studied sites along the LTI. For this purpose, we chose 84 sites in the traffic corridors. Biodiversity parameter evaluations were performed for each site. These parameters are related to functional traits that make it possible to determine the Potential Biodiversity Index (PBI). These site assessments by PBI may reveal the positive impact of the LTI edges in developing biodiversity. We may establish that there is a positive impact of LTI edges for ecological restoration and revegetation in an urban context.

Des travaux scientifiques récents démontrent l’impact croissant, à la fois négatif et positif des infrastructures (infrastructures de transport BRT) sur la biodiversité. Un ensemble de connaissances scientifiques et techniques significatives permettent d’offrir les moyens pour améliorer les pratiques de renaturation en particulier en contexte urbain. Cet article présente un indicateur permettant d’évaluer le niveau potentielle de renaturation long des emprises des LTI dans l’aire du Grand Paris (France) en termes de biodiversité potentielle. Notre travail consiste à analyser les composantes de l’indice de biodiversité Potentielle (IBP) sur des sites étudiés le long de deux LTI - ferroviaire et voie d’eau - qui traversent la forêt de la Poudrière, située au nord-est du Grand Paris, forêt appartenant au site Natura 2000 du département de Seine-Saint-Denis. Un total de 84 relevés ont été effectués sur les 33 ha concernés le long des LTI. Les paramètres étudiés sur ces 84 sites visent à connaître la biodiversité potentielle à travers des traits fonctionnels en vue de définir l’IBP. Ces évaluations permettent de révéler les impacts positifs sur la biodiversité par...
2-8.L’indicateur RENATU

Projet d’article – Auteurs Pierre Pech, Flavia Lfchitz, Laura Thuillier, Cédissia About, Nathalie Frascaria-Lacoste, Philippe Jacob, Laurent Simon

2-8-1 Présentation

Un indicateur de biodiversité est formé à partir de critères sélectionnés et généralement de points attribués selon les caractéristiques pour chacun de ces critères sur un territoire donné. C’est ainsi, un outil à la fois de synthèse, d’évaluation mais aussi de communication car il permet de transformer en une note les éléments recueillis sur le terrain. Un indicateur de biodiversité permet de réaliser une synthèse c’est-à-dire de caractériser un état à partir de critères sélectionnés et agrégés. Par exemple, l’Indice de Biodiversité Potentielle (IBP), permet de caractériser des parcelles de forêt plus ou moins susceptibles d’accueillir de la biodiversité. Ces indicateurs permettent ainsi de simplifier la réalité de la biodiversité en sélectionnant des critères, comme la présence de bois mort au sol, afin de la rendre compréhensible (Rossi et Vallauri, 2013). Il y a simplification mais à partir du raisonnement qui veut qu’un état de l’habitat ou de l’écosystème ou la présence de certains traits de vie de plantes (cela pourrait être la présence d’animaux qui nichent) sont représentatifs d’une complexité plus importante. On peut comparer cela à ce qu’on appelle une espèce clé de voûte.

En tant que synthèse, un indicateur de biodiversité permet aussi de faire le point sur l’état d’un espace, et peut à ce titre aussi servir d’étalon pour évaluer l’efficacité d’un type de gestion. Ainsi, il permet de réaliser un diagnostic sur un espace donné, et de prévoir les politiques de gestions à mener. Réalisé à partir de plusieurs terrains d’étude, l’indicateur de biodiversité peut être utilisé afin d’établir des seuils et des objectifs à atteindre.

Synthèse et outil de simplification de la complexité de la biodiversité, l’indicateur de biodiversité est aussi un outil de communication d’une part en direction du grand public et d’autre part entre différentes disciplines. Ainsi, l’indice STOC peut constituer une « preuve » de l’érosion de la biodiversité, car elle est fondée sur une grande quantité de données et un protocole scientifique (Levrel, 2006b). Parfois accompagnés de guides, ils peuvent aussi être maitrisés et compris par différentes personnes. Ainsi, nul besoin d’être écologue ou naturaliste pour réaliser ou comprendre par exemple l’indicateur de biodiversité potentielle. Ils peuvent alors permettre la collaboration entre les disciplines. Enfin, dans la recherche, l’indicateur de biodiversité permet de passer de données qualitatives à des données quantitatives sur la biodiversité et de réaliser des modèles descriptifs ou à visée prospective en environnement (Levrel, 2006a).

En France, les infrastructures et leurs emprises n’ont cessé d’évoluer pour former aujourd’hui un vaste réseau sur l’ensemble du territoire, En effet, la France dispose de réseaux de transport plus étendus et
plus denses que ceux des pays voisins. Ils existent généralement depuis très longtemps et leur extension n’évolue pratiquement plus depuis 1990. Cependant, du fait de l’urbanisation, de nouveaux modes de transport urbain se sont développés, essentiellement sous forme de tramway et de nouvelles routes urbaines sont apparues. Pour relier rapidement les grands pôles urbains et ouvrir le pays aux échanges internationaux […] (MEEM, 2016). La création et l’allongement de ces ILTe sont adaptés à une demande concernant les transports aussi bien de voyageurs que de marchandises. Elles sont donc densément présentes en France et notamment en milieu urbain, où les besoins en mobilité sont très importants. En Ile-de-France, 8,5 millions de voyageurs empruntent de manière quotidienne les transports en commun. Par ailleurs, dans le cadre du Grand Paris, les ILTe font partie des principaux enjeux puisqu’à moyen terme, 90% des franciliens habiteront à moins de deux kilomètres d’une gare. Aussi, il y a une forte volonté de désenclavement des espaces les plus défavorisés d’Ile-de-France et elle passe par une extension du réseau de ces ILTe (http://www.societedugrandparis.fr/, 2014).

L’impact de l’urbanisation sur la biodiversité peut-être directe ou indirecte : (perte d’habitats, fragmentation, pollution diverse, introduction d’espèces ou encore collision) (Penone, 2012). Notre travail s’intéresse aux ILTe et à leurs impacts sur la biodiversité. Il consiste à analyser le potentiel de biodiversité le long d’un linéaire choisi. Afin d’évaluer le potentiel de biodiversité, nous allons utiliser l’indicateur RENATU.

L’étude présentée ici, concerne la ligne du tramway T2 (Carte 1 ci-dessous) dont l’un des terminus se situe au sud-ouest de Paris et l’autre au nord-ouest de la MGP, dans le département des Hauts-de-Seine. L’une des caractéristiques du tramway, en général, c’est qu’il est aujourd’hui l’une des ILTe les moins étudiées. Cette étude va donc nous permettre d’obtenir des premiers résultats sur une catégorie d’espace peu connu et donc sur une ILTe encore peu documentée.
2-8-2. Le T2 : intérêts méthodologiques et pertinence de son rôle écologique

La ligne a été mise en service en 1997. Elle s’étend sur 17,9 km (presque tous les arrêts sont situés dans le département des Hauts-de-Seine) et dessert notamment le quartier des affaires de La Défense. Le département des Hauts-de-Seine est l’un des plus peuplé d’Île-de-France avec une densité de 9062,1 habitants/km² (INSEE, 2013). Le climat du département est océanique avec des tendances continentales, la moyenne des précipitations est d’environ 650 mm et la température moyenne annuelle de 11,7°C (Thuillier, 2016). Il nous a paru intéressant de travailler sur cette ligne puisqu’elle se trouve à proximité d’espace écologique particuliers : La forêt de Meudon est classée Zone Naturelle d’Intérêt Ecologique, Faunistique et Floristique (ZNIEFF) continentale de type 1. Les ZNIEFF sont classées type 1 pour la présence de secteur de grand intérêt biologique ou écologique. La forêt de Meudon regroupe des habitats liés aux chênaies sessiliflores et aux chênaies – charmies, mais également un certain nombre d’habitats humides (étangs, mares et boisement humides). Le Parc de Saint-Cloud est regroupé avec une partie de la forêt domaniale de Meudon et de celle de Fausses-Repomes. On y retrouve des espèces similaires (MEEM, MNHN, 2013). La présence forte en termes d’entomofaune et d’avifaune en fait un espace environnemental intéressant dans le cadre de notre étude. Le Bois de Boulogne est classé ZNIEFF continentale de type 2. Les ZNIEFF sont classées type
2 lorsqu’il y a la présence de grands ensembles naturels riches et peu modifiés, offrant des potentialités biologiques importantes (INPN, 2017) Le Bois de Boulogne accueille plusieurs populations d’insectes remarquables notamment sur les lisières et dans les vieux boisements. (MEEM, MNHN, 2013). La forêt de Meudon et le Bois de Boulogne ne sont pas les seuls espaces ayant un intérêt écologique. Le complexe sportif Suzanne Lenglen, l’île Saint-Germain, la forêt de la Malmaison bien qu’un peu plus en retrait, l’île Seguin ainsi que divers squares ou cimetières font aussi partie des milieux constituant, à leur échelle un relais dans les corridors voire un réservoir de biodiversité (SRCE, 2013). Par ailleurs, le T2 longe et croise en plus de la Seine (sur plusieurs kilomètres), d’autres ILTe principalement des routes (Périphérique parisien, et notamment l’A13, A14, D7, D992) ou des trains/transiliens (N/J/L/U). Le réseau du tramway est donc un espace pouvant être connecté à ces espaces de nature, ainsi qu’à d’autres infrastructures de transport, jouant ou pas, elles aussi le rôle de corridors. Les axes ferroviaires forment en milieu rural des ruptures de continuité écologique, en revanche, en milieu urbain ils deviennent davantage des axes de continuité. Les réseaux de transport sont en général accompagnés de dépendances vertes. Les dépendances vertes sont l’ensemble des surfaces qui font partie de l’emprise routière à l’exception des chaussées. Elles assurent plusieurs fonctions techniques (par exemple épaulement des chaussées etc.) et routières (sécurité) mais également écologique (écran, filtre aux nuisances mais aussi refuge pour la faune et la flore) et paysagère (valorisation des paysages propre à la route/voie ferroviaire) (Sétra, 2004). Les axes ferroviaires constituent des couloirs potentiels pour la biodiversité et peuvent jouer un rôle d’habitat ou de refuge pour certaines populations spécifiques. Les ILTe pénètrent jusqu’au cœur des villes de manière linéaire et continue favorisant a priori, à créer des continuités écologiques (Penone, 2012). Notre zone d’étude se situant en milieu urbain dense, nous nous intéressons plus précisément à la répartition de la biodiversité ordinaire dans le long d’une infrastructure linéaire de transport comme le tramway.

L’objectif de ce travail consiste à présenter et valider par un échantillonnage statistiquement pertinent, l’indicateur RENATU en répondant aux questions suivantes :
- Quelles sont les valeurs de la biodiversité potentielle le long des emprises constituées d’espace de nature ?
- Dans quelle mesure les emprises de l’infrastructure, constituées d’espaces de nature, représentent des éléments de connectivité au regard des trames vertes d’échelle régionale ?

1. MATERIEL ET METHODE

1.1 L’indicateur RENATU : Présentation et objectif

L’indicateur a été construit suite à des recherches sur différents indicateurs déjà existant et permettant d’estimer de manière facile les potentialités écologiques et la capacité d’accueil de la biodiversité d’un site (Laura Thuillier, 2016). L’indicateur RENATU repose sur l’indicateur Biodi(v)strict et l’Indice de
Biodiversité potentiel (IBP) (Larrieu, Gonin, 2008). Il permet aux gestionnaires d’ILTe d’évaluer le potentiel d’accueil de la biodiversité sur des portions linéaires. L’indicateur est une ébauche, il est modifiable en fonction du type d’ILTe, des observations de terrain ainsi que des moyens disponible par l’entreprise. Des éléments peuvent être rajoutés ou enlevés. L’indicateur permet de prendre en compte et favoriser la biodiversité présente sur le site et notamment la biodiversité végétale. Par ailleurs, afin d’évaluer la biodiversité réelle de sites, les inventaires de la faune et de la flore restent indispensables. L’indicateur RENATU est peu couteux ce qui permet une utilisation interne des gestionnaires sans grandes dépenses. Enfin, il permet une première prise de conscience et de par son système de notation, motiver les opérateurs à améliorer leurs sites pour la biodiversité (Thuillier, 2016).

L’indicateur RENATU se divise en dix catégories :

- Stratification, c'est-à-dire le type de strates présentes (sol nu ; 1 strate ; 2 strates ; 3 strates ; 4 strates).
- Nombre d’espèces ligneuses (arbres et arbustes).
- Nombre de microhabitats.
- Gestion de la strate herbacée (fauche tardive entre mi-septembre et mi-novembre / écopâturage ; Fauche tardive entre mi-juin et mi-juillet ; 2 fauches / an ; sup ou égal (a changer) 3 fauches / an ; Produits phytosanitaires).
- Nombre de couleurs de fleur.
- Nombre de formes de feuille.
- Nombre de formes de fleur.
- Clôture ou mur*.
- Espèces exotiques envahissantes (EEE).
- Installations pour la biodiversité.

Cependant, lors de notre période de terrain, nous nous sommes confrontés plusieurs fois à un problème concernant l’indice « Clôture ou mur ». En effet, il y avait des zones où il n’y avait ni clôture, ni mur, ni haie, mais où il y avait des talus avec de la végétation en continue. Nous avons donc contacté Laura Thuillier afin de lui exposer notre problème et d’obtenir ses conseils et ce qu’elle aurait fait pour attribuer une valeur à ces espaces. Nous nous sommes mis d'accord sur le fait que nous ne pouvions pas accorder la note de 0, qui aurait été trop punitive pour l’indicateur, notamment dans une zone où selon nous il y avait un potentiel de biodiversité. Par ailleurs, nous ne souhaitions pas exclure cette catégorie pour les zones concernées puisqu’il n’était pas possible de comparer des diagrammes radars où certaines catégories n’apparaissent pas. Suite à des discussions avec Cédissia de Chastenet et Philippe Jacob, pour qui la présence de sols nus végétalisés représente une forte valeur de biodiversité potentielle, nous avons décidé de modifier la catégorie de l’indicateur (CF. Annexe 1 catégorie clôture ou mur). Nous avons décidé de rajouter une ligne dans cette catégorie pour les lieux sans clôture ni
mur mais avec de la végétation mais aussi de regrouper les clôtures végétalisées et murs avec anfractuosités, ce qui changerait le score serait la présence d’une ou plusieurs espèces. Ce qui est intéressant ce sont les discussions que nous avons eues avec les personnes interrogées sur le sujet. D’après Mme. Cédissia de Chastenet, ce qui a une certaine valeur n’est pas nécessairement la structure de la clôture ou du mur, c’est la présence d’espèces sur ces structures, le nombre, d’espèces aussi. D’après elle, il faut aussi s’interroger sur la nature de ces espèces. Dans l’indicateur RENATU, le score est plus élevé s’il y a plusieurs espèces présentes sur une structure. Lorsque nous avons échangé avec Philippe Jacob, nous avons eu un regard nuancé concernant le regroupement des clôtures végétalisées aves les murs avec anfractuosités. D’après lui, les clôtures et les murs ne sont pas similaires : un mur est une structure qui ferme le paysage contrairement à la clôture que des populations peuvent traverser. Néanmoins, il nous a conforté dans l’idée que la pleine terre est un élément important de la biodiversité à ne pas laisser de côté et qu’il était une bonne chose de créer une catégorie pour cet élément. Par ailleurs, nous sommes en mesure de dire qu’il serait peut-être pertinent de revoir par la suite cette catégorie, de la tester sur différents ILTe et pas seulement le T2. C’est un sujet encore en discussion qu’il serait intéressant de traiter dans une autre étude ou dans un futur proche.

Voici la modification apportée à l’indice aujourd’hui :

Clôture ou mur
- Milieu isolé (clôture sans végétation, mur lisse) 0
- Clôture végétalisée/ mur avec anfractuosités :
 - Si 1 espèce présente 2
 - Si plusieurs espèces 3
- Pas de clôture mais végétation en continue 4
- Haie 5

Concernant l’indice « Gestion de la strate herbacée », nous l’avons évalué nous même à partir d’une évaluation de l’état de la formation herbacée et non pas d’une enquête faite auprès des opérateurs.

Enfin, afin de mieux comprendre les résultats obtenus à la suite des relevés, nous avons créé des données (logiciel Excel), et élaboré un diagramme radar. L’élaboration et l’étude de la base de données permettent un premier aperçu des sites où la gestion pourrait être améliorée afin de rendre le potentiel d’accueil de la biodiversité plus important.

L’indicateur RENATU est conçu comme un outil opérationnel de suivi de la biodiversité le long des emprises naturelles des infrastructures linéaires de transport afin d’en améliorer la gestion d’un point de vu écologique (hausse du potentiel de biodiversité). Ce indicateur doit permettre d’orienter les pratiques de gestion des opérateurs pour préserver et favoriser la biodiversité sur les dépendances vertes (Thuillier, 2016). Selon Larrieu et Gonin (2008) la biodiversité potentielle est la capacité d’un site à accueillir la biodiversité. Cette dernière est liée à des caractéristiques présentes sur le site et
variées, et notamment des traits fonctionnels plus ou moins liés aux contraintes environnementales. L’indicateur RENATU doit participer à la sensibilisation des gestionnaires des ILTe afin qu’ils préservent la biodiversité présente sur leurs sites. Mais il doit avant tout servir à évaluer simplement par les opérateurs de terrain l’indice de biodiversité potentielle sur leur ILTe et par conséquent suivre les impacts des mesures qu’ils prennent pour favoriser la biodiversité sur l’ILTe. L’indicateur RENATU répond à plusieurs critères :

- L’indicateur est facile d’usage et simple d’interprétation ;
- L’indicateur est rapide à mettre en place ;
- L’indicateur est renouvelable dans l’espace et dans le temps ;
- L’indicateur ne nécessite pas d’inventaire naturaliste complexe (à ce point, il faut ajouter qu’il ne se substitue pas aux inventaires naturalistes) ;
- L’indicateur est peu coûteux

L’indicateur RENATU est adaptable aux différents types d’Infrastructures linéaires de transport. Il est avant tout un outil pédagogique ayant pour vocation d’inciter aux bonnes pratiques afin d’améliorer la biodiversité mais, il est également un instrument d’évaluation efficace pour les gestionnaires.

1.1.1 Mode d’utilisation de l’indicateur

L’indicateur RENATU, comme vu précédemment est composé de 10 catégories dont 7 sont notées de 0 à 5. Initialement, il a été construit pour être utilisé dans une période allant du mois de juin à la fin juillet puisque c’est à cette période où il est plus facile d’identifier la flore. Dans le cadre de notre étude, cet indicateur a été utilisé d’avril à mi-mai puisque mon stage ne durait que 4 mois, de début mars à fin juin. Ainsi, nous avons choisi la période de terrain où il nous serait le plus simple d’identifier la flore. L’intérêt de l’indicateur, est qu’il peut servir pour tout type d’espace. Les résultats finaux se présentent sous la forme de diagrammes radars (CF. Annexe 3). Si l’on souhaite comparer l’évolution d’un site après des changements de pratiques de gestion, il suffira de superposer les diagrammes faits aux deux époques respectives.

1.1.2 Création d’une base de données sous Excel

Nous avons donc lors de notre période de terrain réalisé 43 relevés à la fois sur la ligne du tramway T2, mais aussi autour. Nous souhaitions faire davantage de relevés mais cela n’a pas été possible. Les stations « La Défense », « Issy-Val-de-Seine » et « Porte de Versailles » n’ont pas fait l’objet de relevés puisqu’il n’y avait pas de végétation présente sur ces sites. Par ailleurs, certaines zones de la ligne étaient difficilement accessibles sans autorisation ce qui a participé à la réduction du nombre de relevés. Une fois les relevés réalisés, il nous est possible de les quantifier puis de les traiter sur un tableur dans le but de créer une base de données statistiquement exploitable. A partir de cette base de données, nous pourrons réaliser une cartographie. Cependant, avant la création de la carte, il convient de classer et trier les données afin que la lecture de l’information soit correcte. Pour cela, nous avons
choisi d’utiliser le logiciel Excel. En effet, après avoir fait les relevés, nous avons reporté l’indicateur sous Excel afin de pouvoir lire plus clairement les résultats de chaque relevé (CF. tableau 2).

Tableau 2. Indicateur RENATU : Classement des données.

Le tableur Excel se décompose en treize colonnes.

A est le numéro du relevé.
B est le lieu où a été effectué le relevé.

De la ligne C à L il s’agit des différentes catégories de l’indicateur.

<table>
<thead>
<tr>
<th>C</th>
<th>Stratification.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Nombre d’espèces ligneuses (arbres et arbustes).</td>
</tr>
<tr>
<td>E</td>
<td>Nombre d’arbres avec microhabitats.</td>
</tr>
<tr>
<td>F</td>
<td>Gestion strate herbacée.</td>
</tr>
<tr>
<td>G</td>
<td>Nombre de couleurs de fleur.</td>
</tr>
<tr>
<td>H</td>
<td>Nombre de formes de feuille.</td>
</tr>
<tr>
<td>I</td>
<td>Nombre de formes de fleur.</td>
</tr>
<tr>
<td>J</td>
<td>Clôture ou mur.</td>
</tr>
<tr>
<td>K</td>
<td>Espèces exotiques envahissantes (EEE).</td>
</tr>
<tr>
<td>L</td>
<td>Installations pour la biodiversité.</td>
</tr>
</tbody>
</table>

Enfin, la colonne M représente le score total attribué au relevé. Le score total est la somme des scores des indices par relevé.

Chaque ligne du tableau représente donc un relevé, son numéro, sa situation, son score dans chacune des catégories et enfin son score final. Il y a en tout 43 relevés.

1.1.3 La méthode de discrétisation

Une fois les relevés réalisés, nous les avons discrétisés (logiciel Excel). La discrétisation des données permet de découper en classe une série de variables qualitatives ou quantitatives. Cette opération simplifie l’information en regroupant les objets géographiques présentant les mêmes caractéristiques en classes distinctes (Zanin, 2014). Elle permet de répondre aux exigences de la représentation.
cartographique. L’opération de discrétisation permet une meilleure hiérarchisation ainsi que l’organisation des données puisqu’elle donne la possibilité de trier les données et de les placer dans des classes distinctes. Afin de réaliser une discrétisation « correcte », il convient de justifier les bornes de classes mais aussi le nombre de classes. Il existe plusieurs méthodes pour choisir les bornes de classes puisque les principes de la discrétisation diffèrent en fonction des objectifs à atteindre. Ainsi, afin de connaître le nombre de classes optimales pour une distribution il est possible d’utiliser l’indice de Huntsberger qui apportera une aide indicative (Beguin., Pumain, 2003 ; Zanin, 2014).

Indice de Huntsberger :

\[N(cl) = 1 + 3,3\log_{10}(N) \]

\(N \) = Nombre d’observations.
\(N(cl) \) = Nombre de classes.

Le calcul de cet indice nous permet de retenir quatre classes.

Nous avons discrétisé nos données en utilisant la méthode des classes standardisées selon la moyenne et l’écart-type. La moyenne de la série se situe pour un nombre pair des classes à la limite des classes. Quant au nombre des classes il est conditionné par les possibilités de la représentation cartographique, l’effectif total du nombre d’observations et l’allure de la variable.

Classe 1 : \([\text{min} ; \text{BS}1]\]
Classe 2 : \([\text{BS}1 ; x]\]
Classe 3 : \([x ; \text{BS}3]\]
Classe 4 : \([\text{BS}3 ; \text{max}]\]

Où :

\(\text{min} \) = valeur minimal de l’Indicateur RENATU
\(\text{BS}1 \) = moyenne – écart-type \((x – \sigma)\)
\(x \) = moyenne
\(\text{BS}3 \) = moyenne + écart-type \((x + \sigma)\)
\(\text{max} \) = valeur maximale de l’Indicateur RENATU

Résultats :

Classe 1 : \([12 ; 20]\]
Classe 2 : \([20 ; 28]\]
Classe 3 : \([28 ; 35]\]
Classe 4 : \([35 ; 44]\]

Afin de réaliser la discrétisation, nous avons à nouveau utilisé le logiciel Excel. Nous avons créé un deuxième feuillet qui a servi de feuille de calcul pour la moyenne, l’écart-type, ainsi que les opérations telles que : (moyenne + écart-type) et (moyenne – écart-type), les valeurs maximales et minimales et enfin nos classes et leurs bornes (Pech et al., 2016). N apparaît ici comme le dénominateur (c’est-à-dire le nombre total de relevés). Dans ce feuillet apparaît deux fois le score total. En effet, nous allons le classer par ordre croissant afin d’obtenir la valeur minimale et la valeur maximale. Enfin, nous allons faire un découpage des scores par rapport aux classes et bornes de classe et utiliser l’outil
« couleur de remplissage » e, choisissant un dégradé de bleu que nous utiliserons par la suite dans la cartographie comme couleur de référence pour classer nos relevés selon leur potentiel plus ou moins faible/fort de biodiversité (CF. tableau 3).

1.1.4 Réalisation et intérêt d’une cartographie du T2

La carte est un document visuel qui suit des règles particulières. Elle est un outil d’expression et de représentation scientifiques. La cartographie permet de visualiser les points de relevés mais aussi certains résultats du traitement de la base de données. Elle est un outil de localisation et permet de connaître la nature, les relations et l’importance de données traitées. L’objectif d’une carte est de transmettre une ou des informations. Afin de réaliser une « bonne » cartographie, il convient de se poser plusieurs questions relatives à notre étude en particulier dans l’optique de justifier la fonction et la finalité de carte ? Que veut-on montrer au travers de la réalisation de cette dernière ? A qui est-elle adressée ? À quelle échelle peut-on la réaliser afin qu’elle soit suffisamment lisible ? (Quodverte, 1997). Quelles sont les contraintes liées à la création d’une cartographie ? Comme expliqué précédemment, afin de pouvoir concevoir une carte, il s’agit de sélectionner et ordonner nos données selon des logiques statistiques dans le but de rendre l’information utilisable. Notre carte permet de visualiser les relevés ainsi que la répartition de la biodiversité autour de la ligne du T2. Elle nous montre dans un premier temps, l’ensemble de la ligne étudiée et les relevés qui ont été réalisés. Elle nous présente également la façon dont se compose l’environnement autour de la ligne du tramway c'est-à-dire la présence de bois, de forêts, de parcs, cimetières ainsi que des autres infrastructures linéaires de transport, les espaces plus ou moins végétalisés ou minéralisés. Connaître la composition
de l’environnement autour de la ligne du T2 va nous permettre par la suite de comprendre la présence et la répartition de la biodiversité autour de l’infrastructure.

1.1.5 La construction de la carte RENATU T2

Afin de construire la carte RENATU T2, nous avons choisi d’utiliser le site Géoportail et le logiciel Adobe Illustrator. Géoportail est le support principal de la carte, la base géoréférencée. Le tracé du tramway est réalisé à partir de ce fond de carte. Cette base cartographique suffisamment lisible et précise, nous permet via un choix varié de cartes thématiques d’afficher les aplats de couleurs pour les espaces verts, comme les forêts et les bois, grâce aux cartes forestières. La rubrique « outil de création », nous permet d’utiliser l’outil « dessiner des lignes ». Cet outil permet de représenter le tracé de la ligne du tramway en noir sur la carte. Les fonctionnalités de Géoportail permettent des changements d’échelle afin de cibler l’espace étudié à une plus grande échelle, cela nous servira comme carton d’orientation ayant pour but de situer par rapport à Paris notre zone d’étude. Une fois l’échelle choisie, et le fond de carte construit, il nous a fallu faire une impression écran puisqu’il n’est pas possible d’exporter une carte de Géoportail vers un logiciel. Nous avons copier/coller le fond de carte (avec le tracé de la ligne de T2 et les aplats forestiers) grâce au logiciel Adobe Illustrator. A partir d’Illustrator, il nous a été possible de choisir dans un premier temps, le dégradé de bleu que nous allions utiliser pour représenter la discrétisation des scores des relevés ainsi que la variation du potentiel de la biodiversité au niveau de ces derniers. Une fois les couleurs sélectionnées, nous avons décidé de créer des ronds pour les relevés qui se situent au niveau des stations, et des carrés pour les relevés situés entre les stations. Le but étant d’obtenir une lisibilité optimale. Nous avons ensuite rempli les formes (carré et rond) du bleu qui correspond au score du relevé. Ensuite, nous avons ajouté aux relevés les numéros qui leur correspondent. A cet effet et encore une fois dans une démarche de bonne lisibilité nous avons choisi d’alterner si c’était possible les numéros d’un côté et de l’autre de la ligne. Nous avons ensuite ajouté les noms des forêts, bois mais également les noms des terminus de la ligne du tramway (Porte de Versailles – Pont de Bezons) mais également d’ajouter Paris comme point de repère. (CF. carte 2 p.21).

2-8-3. RESULTATS

Il y a en tout quarante-trois relevés : vingt correspondent aux stations et vingt-trois on été réalisés entre les stations. Concernant ces relevés, sept sont classés comme faible en biodiversité, douze classés moyen inférieur, quatorze classés moyen supérieur et dix classés fort (CF. carte 2). Il y a donc un peu plus de 50% des relevés dont les valeurs sont supérieures ou égales à la moyenne. Le diagramme radar présente les résultats pour les différents indices en l’état actuel des zones sur lesquelles ont été effectués les relevés (CF. Annexe3).

Exemple :
Relevé Numéro 11 : Belvédère
Nous avons choisi Belvédère pour exemple puisqu’il est l’un des relevés dont le score total est le plus élevé (36). Son score est notamment dû à la présence de jardins/potagers partagés à quinze mètres de l’emprise. Belvédère une station qui se situe au centre de la ligne du tramway qui est l’endroit avec le potentiel de biodiversité le plus élevé. Ici, il nous permet d’illustrer la manière dont sont exposés les résultats de l’indicateur (CF. Annexe 3).

Nous allons maintenant voir quels sont les résultats globaux à la suite des relevés.

1) Stratification :

Plus de la moitié des relevés effectués sur la ligne ont obtenu le score de 4 c’est-à-dire un résultat attestant de la présence de trois stratifications différentes sur les zones de ces relevés. Par ailleurs, seize relevés ont obtenu une note inférieure (c'est-à-dire entre 1 et 3), entre le sol nu et la présence de deux strates maximum. Ces seize relevés ont pour la plupart été réalisés au nord de la ligne dans un espace plus minéral et artificialisé. Les zones avec de nombreuses strates se situent davantage vers le sud de la ligne, dans des espaces de végétation plus dense et diversifiée.

2) Nombre d’espèces ligneuses (arbres et arbustes) :

Sur l’ILTe étudiée, on peut noter que trente-sept relevés sur quarante trois atteignent 3, 4 ou plus. Cela signifie que sur ces zones étudiées, on retrouve une forte présence d’espèces ligneuses. Sur l’ensemble des relevés seuls cinq sont dotés de peu d’espèces d’arbres et arbustes (1 à 2 espèces). Encore une fois, les relevés qui ont un score inférieur à la moyenne concernant cette catégorie sont situés dans le nord de la ligne entre Faubourg de l’Arche et Victor Bash (zone qui s’étend de 2 à 5 kilomètres).

3) Nombre d’arbres avec microhabitats :

Plus de la moitié des relevés attestent de la présence de microhabitats le long de la ligne du tramway T2. Quinze relevés obtiennent le score maximal de 5, ce qui atteste d’un potentiel de biodiversité important sur ces sites. Afin de calculer le score de la catégorie d’arbres avec microhabitats, il faut se référer à l’indicateur mais également à la surface de la zone étudiée (CF. tableau 4).

<table>
<thead>
<tr>
<th>Surface étudiée</th>
<th>Score = 0</th>
<th>Score = 2</th>
<th>Score = 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤1000m²</td>
<td>0 arbres</td>
<td></td>
<td>≥1 arbre</td>
</tr>
</tbody>
</table>
Tableau 4. Echelle de notation des arbres porteurs de microhabitats (Thuillier, 2016)

<table>
<thead>
<tr>
<th>2000m²</th>
<th>0 arbres</th>
<th>1 arbre</th>
<th>≥2 arbres</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000m²</td>
<td>0 arbres</td>
<td>1 à 2 arbres</td>
<td>≥3 arbres</td>
</tr>
<tr>
<td>10000 m² / 1ha</td>
<td>0 arbres</td>
<td>1 à 5 arbres</td>
<td>≥6 arbres</td>
</tr>
</tbody>
</table>

Pars ailleurs, dix-huit relevés effectués sur la ligne ont obtenu le score minimal de 0 c’est-à-dire aucun arbre porteur de microhabitats sur l’espace du relevé. Ces derniers relevés à faible valeur des indicateurs de biodiversité potentielle se situent soit au niveau de station soit dans le nord de la ligne.

4) Gestion strate herbacée :

Le score le plus élevé de cette catégorie s’élève à quatorze relevés. Ils combinent une gestion mesurée avec une faible fréquence des interventions et avec une fauche tardive entre mi-juin et mi-juillet. La majorité de ces relevés ont été fait au centre de la ligne c'est-à-dire au sud du quartier de la Défense en partant du Nord. Néanmoins, onze relevés ont obtenu le score de 2. Ils correspondent à une fauche effectuée deux fois par an. Enfin, neuf relevés se situent dans des zones où la gestion est très forte avec trois fauches par an ou parfois plus et neuf autres relevés se situent, eux dans des zones de gestion peu intense avec une fauche tardive entre la mi-juillet et la mi-juin. De manière générale, une tendance semble marquée sur la ligne et semble correspondre à un mode de gestion. Au nord à partir de la Défense, il y a des fauches très courantes. Cela est dû au fait que les espaces de nature de l’ILTe sont réduits à des bandes enherbées : celles-ci sont les éléments mis en place par l’opérateur, la RATP. En revanche, dans la partie centrale de la ligne, entre Belvédère et Parc de Saint-Cloud, la gestion semble plus favorable à la biodiversité, la constitution de milieux de nature plus variés, des haies, des arbres, parfois organisés en véritables petits bois, des bandes enherbées voire de vrais secteurs en pelouse avec des fauches en générale tardive. C’est d’ailleurs dans ce secteur que des jardins partagés ont été installés à proximité de l’emprise du tramway. Au sud de la ligne, il y a une mosaïque de situations.

5) Nombre de couleurs de fleurs :

Les différentes catégories de couleurs de fleur sont : blanc, jaune, vert, violet/rose/bleu, rouge. Plus de 50% des relevés ont obtenu un score de 3 c’est-à-dire qu’ils sont composés d’au moins trois couleurs de fleurs différentes sur l’espace où ont été effectués les vingt-trois relevés. Ces relevés sont répartis de manière éparses sur la ligne. Onze relevés ont obtenu le score de 2, 5 ont obtenu le score maximal de 5 et quatre ont obtenus le score minimal de 1. Les relevés ayant obtenu le score maximal se situent presque tous au centre ou au sud de la ligne. Les relevés ayant eu le score minimal se répartissent de la même manière.

6) Nombre de forme de feuilles :

Les différentes formes de feuille sont : filiformes (très fines), découpées, composées, autres. Vingt et un relevés (soit presque la moitié) ont obtenu un score de 4 c’est-à-dire trois formes de feuilles différentes présentent sur les stratifications, elles aussi présentes dans les zones de ces relevés. Douze relevés ont
obtenu un score maximal de 5. Neuf relevés ont obtenu un score de 2 et un seul relevé a obtenu un score de 1. Les relevés ayant obtenu les scores les plus faibles, se situent dans le nord de la ligne entre Puteaux et Pont de Bezons.

7) Nombre de forme de fleurs :

Les différentes formes de fleurs sont : en ombelle, en capitule, en grappe, autres. De manière générale, il n’y pas une grande diversité de forme de fleurs sur l’ensemble de la ligne puisque vingt et un relevés ont obtenus un score de 2 soit pas plus de deux formes de fleurs différentes par relevé. Onze ont obtenu un score de 1 soit le score minimal, huit ont obtenu un score de 3 et trois ont obtenu le score maximal de 5. Les trois relevés ayant le score le plus élevé se situent dans le sud et le centre de la ligne.

8) Clôture ou mur :

Plus de 50% des relevés ont été réalisés dans des espaces avec la présence de végétation sur des structures comme les clôtures et les murs. Huit relevés ont obtenu le score maximal de 5 c’est-à-dire la présence de haies. Huit autres relevés ont obtenu le score de 3 c’est-à-dire la présence de clôtures végétalisées ou de murs avec anfractuosité sur lesquels vivent plusieurs espèces (faune ou flore). Huit autres relevés ont obtenu le score de 2 comme pour les relevés précédents, il y a la présence de clôtures végétalisées ou de murs avec anfractuosités mais cette fois-ci, une seule espèce était présente. Cinq relevés ont obtenu le score de 4, c’est-à-dire une absence de clôture ou de mur mais la présence en continue de végétation. Les relevés ayant le score minimal se situent en grande partie dans le nord de la ligne entre la Défense et Pont de Bezons. Néanmoins quelques uns d’entre eux, sont situés dans le sud de la ligne sur des stations dont l’aménagement favorise le minéral et une gestion relativement courante par exemple, la station Brimborion.

9) Espèces exotiques envahissantes :

De manière générale sur l’ensemble des relevés et de la ligne, il n’y a pas d’espèces exotiques envahissantes. Trente-sept relevés sur quarante-trois ont obtenu le score maximal de 5, c’est-à-dire « pas d’espèces exotiques envahissantes ». Six relevés ont obtenu le score de -1 c’est-à-dire rares individus (1 à 3) isolés. De manière générale, les rares individus répertoriés comme espèces exotiques envahissantes étaient le bambou.

10) Installations pour la biodiversité :

Il y a peu d’installations pour la biodiversité sur l’ensemble de la ligne de tramway T2. En effet, 39 relevés ont obtenu le score de 0 c’est-à-dire pas d’installations pour la biodiversité. 2 relevés ont obtenu le score de 4 c’est-à-dire une seule installation prévue pour accueillir de la biodiversité. Ce sont les stations Porte d’Issy où est agencé un nichoir pour les oiseaux et la station Belvédère qui à aménagé un hôtel à insectes. 2 autres relevés ont obtenu le score maximal de 5 c’est-à-dire plusieurs installations accueillant la biodiversité. La station Jacques Henri Lartigue où l’on trouve plusieurs nichoirs à oiseaux et la station qui
se situe dans le jardin partagé entre les Coteaux et les Milons où l’on retrouve plusieurs nichoirs à oiseaux ainsi qu’un hôtel à insectes.

2-8-4. DISCUSSION

3.1 Une première tendance dans la répartition spatiale du potentiel de la biodiversité

Suite aux résultats, nous allons formuler plusieurs hypothèses. Lorsque l’on observe la carte, nous distinguons une première tendance concernant la répartition et le potentiel de la biodiversité. En effet, nous constatons qu’au nord de la ligne, juste après la station Puteaux (12) et jusqu’au terminus Pont de Bezons, le potentiel de biodiversité est plus faible qu’au sud de la carte. A partir de la commune de Rueil-Malmaison et jusqu’à la station Parc de Saint-Cloud (7), nous sommes dans un espace où le potentiel de biodiversité est plus fort que sur le reste de la ligne. A partir de Parc de Saint-Cloud, il y a une alternance d’espaces avec un potentiel élevé et moyen supérieur ce qui atteste d’un potentiel relativement fort à biodiversité (CF. carte 1 ci-dessous). Nous allons donc expliquer les différentes tendances et chercher à comprendre comment se réparti le potentiel de biodiversité autours de la ligne, quels sont les éléments qui impacts le potentiel de biodiversité et de quelle manière les emprises liées à l’ILTe représentent des éléments de connectivité.
3.1.1 Du quartier de la Défense à Pont de Bezons : un secteur minéral au faible potentiel de biodiversité

Au nord, à partir de la Défense, on trouve des quartiers récents datant des années 1960, (par exemple, le Faubourg de l’Arche) ou encore avec une faible végétation. Le peu de proximité avec des espaces verts ne favorise donc pas la présence de biodiversité. Lorsqu’il y a de la végétation, c’est avant tout dans un contexte artificialisé avec des parcelles plantées par les opérateurs. L’environnement au nord de la ligne est très minéral, ainsi, les constructions comme les murs ou encore les clôtures ne sont que très rarement végétalisés ce qui ne permet pas d’échange entre les espèces et les rares espaces de nature. Par ailleurs, il ne nous a pas été possible de faire de relevés à la station « La Défense » où il y a une absence totale de végétation puisqu’elle est en sous-sol. Le potentiel de la biodiversité augmente néanmoins dans certaines
zones en raison de la présence notamment de cimetières, qui peuvent être des lieux favorables à la présence d’espèces, néanmoins cela dépend de leur configuration. Par ailleurs, il nous est possible de supposer que dans les quartiers situés plus au nord de la Défense, il y a une capacité de prise en charge et d’appropriation de l’espace beaucoup plus restreinte qu’au sud, qui pourrait être dû à la présence de classes sociales moins aisées que celles habitant au sud. Les communes ne donneraient peut-être pas la possibilité aux habitants d’exploiter des espaces qui pourraient devenir des jardins partagés. Il faudrait néanmoins valider cette hypothèse avant de pouvoir affirmer notre propos. De plus, on note une tendance générale dans cette partie de la ligne, où l’on y retrouve beaucoup d’espace de pelouse et seulement quelques zones d’alignements d’arbres. Il y a néanmoins quelques exceptions notamment au niveau du Pont de Bezons. En effet, la ligne croise à nouveau la Seine qui se juxtapose avec le parc Pierre Lagravère. Afin d’illustrer notre propos, nous allons prendre exemple sur deux relevés réalisés dans le Nord de la ligne : le relevé N° 15 qui se situe à la station Charlebourg et le relevé N°33 qui se situe entre les stations Victor Bash et Jacqueline Auriol (CF. Carte 3 ci-dessous).
Le relevé N°15 réalisé à l’arrêt Charlebourg a le score minimal de 12 sur l’ensemble des relevés il est donc l’espace où le potentiel de biodiversité est le plus faible sur la ligne. Nous pouvons donc faire l’hypothèse avant analyse précise de ces indices, que cette station se situe dans un espace minéral où est exercée une gestion intensive. L’indice le plus élevé de ce relevé est l’absence d’espèces exotiques invasives. En revanche tous les autres indices ont un score faible. Lorsque l’on s’intéresse de plus près au relevé on remarque tout de suite la présence d’une forte gestion avec trois fauches voir plus par an, en effet, si on se reporte à la photographie, on s’aperçoit qu’il n’y a que de la pelouse et un léger alignement d’arbres. L’arrêt est en juxtaposition directe avec la départementale 992. Il n’y a qu’une espèce d’arbre, aucun
microhabitat et deux strates. Nous sommes ici dans un environnement très minéral avec peu de végétation, pas de présence de parc ou de square à proximité. Cet espace est isolé et ne permet pas d’échange possible avec des espèces qui vivaient plus au sud. Par ailleurs, les seules espèces de fleurs ont été plantées volontairement ce qui atteste de l’artificialité de la zone (comme un grand nombre d’espace entre la Défense et la commune de Bezons).

Le relevé N°33 a été réalisé entre les stations Victor Bash et Jacqueline Auriol et a obtenu le score de 22. Il fait donc partie de la catégorie moyen inférieur, c'est-à-dire que le potentiel de biodiversité est relativement faible mais pas inexistant. Ce qui est intéressant concernant ce relevé c’est qu’il diffère des autres situé dans la partie nord de la ligne. Par exemple, il y a plus d’espèces ligneuses et plus de strates (3 strates). Il atteint un score élevé concernant les formes de feuilles et de fleurs. Par ailleurs lors de ce relevé sur terrain, il était possible de constater la présence de quelques clôtures végétalisées proches de l’emprise, ce qui atteste de la présence d’espèces qu’on ne retrouve pas sur les sites aux alentours. En observant l’emprise elle-même, à certains endroits nous avions l’impression qu’il y avait une gestion plus tardive des espaces enherbés. Cet élément pourrait expliquer la présence plus élevée de fleurs. Il n’apparaît pas sur la carte mais, nous avons pu constater la présence d’un cimetière, le cimetière communal de la Cerisaie qui se situe à moins de 100mètres de l’emprise. Nous savons qu’un cimetière peu constituer un élément important en termes de biodiversité. Le cimetière de la Cerisaie abrite plusieurs espèces d’arbres. Lorsque nous l’avons contourné, nous avons remarqué qu’une partie du cimetière était entourée de murs avec parfois quelques anfractuosités mais également de clôtures, or, un certain nombre de ces clôtures étaient végétalisées. Nous pouvons donc émettre l’hypothèse que ce cimetière abrite des espèces végétales et peut-être animales. La présence de ce cimetière pourrait être la source de diversité et expliquerait peut-être la hausse de certains indices du relevé.

3.1.2 De la ville de Puteaux à Portes de Versailles : un secteur végétalisé au potentiel de biodiversité élevé

A partir de la station Belvédère, au sud de la Défense, après la ville de Puteaux, on observe une forte hausse de la valeur de la biodiversité. La présence de végétation dense et diversifiée nous permet de faire l’hypothèse d’un potentiel de biodiversité plus élevé que dans les quartiers au nord de la Défense. Par ailleurs, il y a une proximité à de grands espaces de nature considérés comme des réservoirs de biodiversité par exemple, le Bois de Boulogne classé ZNIEFF continental de type 2 et qui se situe selon les relevés à 1,5 km ou 2,5 km selon les stations, mais également la forêt domaniale de Meudon (1km à 3km), celle de Fausses Reposes (2,3 km à 4,5km), ainsi que le domaine national de Saint-Cloud (100 m à 4,5km) qui sont classés ZNIEFF continentale de type 1, ou encore la forêt domaniale de la Malmaison qui se situe plus en retrait à 4km au plus près et 8,5km au plus loin c'est-à-dire depuis Porte de Versailles. Au niveau du centre de la ligne ou dans le sud, on retrouve plusieurs des éléments particuliers en plus de la présence de forêt. La Seine longe la ligne jusqu’à la ville de Puteaux. Il nous est donc possible de supposer qu’il pourrait y avoir des échanges entre les espaces de nature comme les forêts, les dépendances vertes de l’emprise, et la
Seine. Par ailleurs, les lignes ferroviaires de la banlieue parisienne, L et U, se juxtaposent à l’Ouest du tramway. Nous faisons l’hypothèse que ces lignes qui partent plus à l’ouest (l’une traverse le domaine de Saint-Cloud et passe très proche de la forêt de Fausses Reposes, l’autre longe la forêt de Meudon) ont un rôle de continuum pour certaines populations spécifiques. De par leur proximité aux différentes ZNIEFF, elles pourraient surement servir de corridors pour certaines espèces qui se retrouveraient ensuite proches du T2, il y aurait probablement des échanges entre tous ces réservoirs de biodiversité et les ILTe. De manière générale, centre et au sud de la ligne du T2, nous retrouvons des éléments récurrents qui pourraient être liés à un continuum accueillant un fort potentiel de biodiversité, notamment du fait d’une plus grande densité de la végétation, la présence de plus d’espèces ligneuses et surtout d’arbres porteurs de microhabitats (en général du lierre, des lianes mais également le décollement d’écorce ainsi que la présence de quelques champignons). Par ailleurs, on atteste la présence plus forte de haies, de zones avec de la végétation en continue ou de clôture végétalisées qui abritent plusieurs espèces. Enfin, le mode de gestion est plus éloigné de celui que l’on retrouve dans le nord avec des espaces enherbés formant de véritables prairies caractérisées par des fauches tardives qui commencent soit en juin mais parfois pas avant mi-novembre. Nous pourrions supposer qu’avec la forte densité de végétation, il est plus difficile pour les opérateurs de faire des fauches régulières. De plus, il pourrait être probable qu’il y ait une volonté de la part des communes de garder ces espaces tels quels. Il est probable que les différents modes de gestion ont une influence sur le potentiel de biodiversité d’un espace. Plus une zone va être souvent fauchée moins elle serait en mesure il d’accueillir des populations ordinaires ou spécifiques. Afin d’illustrer notre propos concernant la partie centre et sud de la ligne nous allons choisir deux relevés : l’un réalisé au niveau des jardins partagés entre les stations « les Coteaux » et « les Milons » qui es le relevé N°23, et l’autre au niveau de la station Jacques Henri Lartigue qui est le relevé N°3 (CF. Carte 4 ci-dessous).
Le relevé N°23 a obtenu le score maximal de 44 sur la ligne, ce qui signifie que l’espace où il a été réalisé a un potentiel de biodiversité élevé. Il se situe au centre de la ligne au niveau de jardins partagés. Ces derniers sont en général des lieux d’accueil de la biodiversité. Un grand nombre d’espèces végétales et animales viennent s’y abriter. Lorsque l’on analyse le diagramme radar, on s’aperçoit que les indicateurs sont élevés. En effet, on distingue quatre strates différentes, mais également un certains nombre d’espèces ligneuses. Cet espace abrite plusieurs arbres porteurs de microhabitats ainsi qu’une richesse floristique (présence de formes et de couleurs de fleur mais également de feuille). Les clôtures autour des jardins
sont végétalisées par plusieurs espèces. Le paysage décrit et répertorié sur le site ainsi que la composition physionomique semble traduire la volonté de ne pas avoir une gestion intensive de la présence d’essences qui ont poussés spontanément ainsi que quelques espèces de fleurs plantées. Nous sommes dans un espace où la population de la commune de Saint-Cloud agit afin de préserver la biodiversité. Il y a des communes, comme celle de Saint-Cloud qui mettent en place des écosystèmes récréatifs et qui sont entretenu par la population. La présence de plusieurs installations pour la biodiversité comme les nichoirs à oiseaux ou les hôtels à insectes démontrent l’implication de personnes souhaitant favoriser le développement d’un espace favorable à la biodiversité. De plus, ces jardins se situent à proximité du Bois de Boulogne et du domaine de Saint-Cloud. On suppose que la présence proche de la Seine joue un rôle dans le potentiel de biodiversité élevé de ce relevé. Il serait donc probable qu’il y ait des échanges entre ces différents espaces (Seine, emprise et jardins partagés).

Le relevé N° 3 a obtenu un score de 36, ce qui veut dire que lui aussi, accueill un fort potentiel de biodiversité. Il se situe dans la commune d’Issy-les-Moulineaux (sud de la ligne du T2 et sud-ouest de Paris). Ce relevé atteste d’une grande diversité d’espèces ligneuses mais également de couleur et de formes de fleur et de feuille. Aux abords de l’emprise, des nichoirs à oiseaux sont installés. En effet, nous avons pu remarquer une forte présence d’avifaune. Cet espace a une structure particulière puisque le quartier autour de la station est aménagé en écoquartier avec des murs végétalisés, de larges parcelles de végétation au pied des immeubles. Des gabions en cours de végétalisation sont aménagés à proximité de ruches. De plus, la Seine étant juxtaposée à l’emprise, on suppose qu’elle joue un rôle dans la présence des différentes espèces. Par ailleurs, lorsque l’on franchit la Seine, on se retrouve sur l’île Saint-Germain sur laquelle se trouve le Parc départemental de l’île Saint-Germain. Le parc de l’île bénéficie du label Eve (Espace végétal écologique) ce qui signifie qu’il a une valeur en termes écologique. Par ailleurs, certaines zones du parc sont classées ENS (Espace Naturel Sensible). Le parc abrite une forte diversité d’espèces floristiques, il se divise en plusieurs jardins (jardin des lavandes, jardins imprévus, jardins clos, jardin messicoles, jardin antérieur, jardin des découvertes), ainsi qu’en espace clos où l’on ne peut pas accéder et qui est réservé à la faune et la flore. Encore une fois lors de notre étude de terrain, nous nous sommes rendu dans le Parc de l’île Saint-Germain où nous avons également constaté une forte présence avifaune, mais également des ruches et la présence de hérissons. Nous pouvons à la suite de cette description supposer qu’il y a des échanges entre les différents espaces (écoquartier, Seine, île Saint-Germain, emprise) qui permettrait un potentiel d’accueil de la biodiversité élevé.
Références

HARROIS-MONIN, F. Climat et biodiversité. CNRS [En ligne, consulté le 07/06/2017] Disponible en ligne sur : http://www.cnrs.fr/cw/dossiers/dosbiodiv/?pid=decouv_chapC_p7_d1

Levrel H., 2006 a. Biodiversité et développement durable, quels indicateurs ?
Levrel H., 2006 b. Construire des indicateurs durables à partir d’une savoir issu de multiples pratiques : le cas de la biodiversité, Gérer et Comprendre,

VANDEVELDE, J-C. Les choix de tracé des grandes infrastructures de transport : quelle place pour la biodiversité ? Développement durable et territoire Vol. 4, n°1 (Avril 2013) – La biodiversité aménage-t-elle le territoire ?

